
October 19, 2015

Tales from the Edge: 
Boundary Terms and Entanglement Entropy 
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For a nonlocal, nonobservable, ultraviolet cut-off dependent 
quantity, entanglement entropy has become surprisingly 

important in theoretical physics today. 

A Unifying Theme



Why is It Important?

✤ Quantum information, communication and computation — measure of 
entanglement in quantum systems!

✤ Condensed matter physics — order parameter for exotic phase transitions 
(Osborne-Nielsen 2002, Vidal et al. 2003)!

✤ Quantum field theory (QFT) — measure of renormalization group flow (a 
and c theorems) (Casini-Huerta 2006, 2012)!

✤ Gravity — relations to black hole entropy (Bombelli et al. 1986, Srednicki 1993); 

Bekenstein bound (Casini 2008)!

✤ String theory — Ryu-Takayanagi (2006) formula and AdS/CFT ties QFT 
and gravity aspects together.



Entanglement Entropy

✤ Consider a state                                in a factorizable 
Hilbert space.  (A and B spatial.)!

✤ Form density matrix:!

✤ Perform the partial trace: !

✤ Compute the von Neumann entropy of 

⇢ = | ih |

⇢A = trB ⇢

SE ⌘ � tr(⇢A log ⇢A)

⇢A

| i 2 H = HA ⌦HB

⇢A =
1

2
(|#ih#|+ |"ih"|)

For the EPR pair

SE = log 2



The Challenges in QFT

✤ The assumption that the Hilbert space can be 
factorized wrt to A and B is often problematic. !

✤ The infinite number of degrees of freedom means 
entanglement entropy is badly divergent.!

✤ That the density matrix grows exponentially with the 
size of the Hilbert space means entanglement entropy 
is difficult to compute.
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Use a Lattice

✤ Provides a natural UV 
cut-off — the lattice 
spacing.!

✤ In many lattice models, 
the Hilbert space factors 
lattice site by lattice site.

A

B



Boundaries and the UV Cutoff

A

B

δ

E.g., for a quantum field theory in the 
ground state

Lesson here that most of the correlations are local.

(Srednicki 1993)

Most of the interesting EE !
results involve a UV regulator

Corollary: Better treat the boundary of A correctly.

SE ⇠ Area(@A)

�d�2
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Factorizability 
and Boundaries

✤ Difficult to get chiral fermions 
on the lattice. (Iqbal-Wall, Nishioka-
Yarom, Hellerman) !

✤ For a lattice version of E&M, 
observables are loops.  
(Buividovich-Polikarpov, Casini-
Huerta, Radicevic, Donnelly, et al.)!

✤ There may indeed be issues in 
general.

A

B

magnetic field

(Buividovich-Polikarpov 2008)



Two Tales from the Edge 

✤ Universal contributions to entanglement entropy at 
zero temperature (work with K.-W. Huang and K. Jensen).!

✤ Thermal corrections to entanglement entropy (work with 

M. Spillane, J. Nian, R. Vaz, and J. Cardy).
Moral: The importance of boundary terms.

For conformal field theories (CFTs)



Trick for Calculating EE of CFTs

2q

A

B

A
B

For caps on spheres and balls in flat space, !
“A” gets mapped to all of hyperbolic space.

conformal!
transformation

Has
`

`

T = 1/2⇡`



Map to Hyperbolic Space

✤ Density matrix on hyperbolic space is thermal: !

!

✤                        for some unitary operator   .!

✤ EE invariant under    implies thermal entropy of 
hyperbolic space is EE.  (see e.g. Casini-Huerta-Myers 2011)

U

U

called the modular Hamiltonian⇢ =
e��H

tr e��H

� = 2⇡`

⇢A = U�1⇢U

H



Universal contributions to EE at 
zero T

A
B

There is a “universal” contribution to EE that !
is proportional to “a” anomaly coefficient in        .hTµ

µ i

Weyl curvature!
invariants

Euler density
UV cutoff

Euler character of sphere. (Solodukhin 2008; !
Casini-Huerta-Myers 2011)

`

SE = ↵
Area(@A)

�d�2
+ . . .+ 4a(�1)d/2 ln

�

`
+ . . .

hTµ
µi =

X

j

cjIj � (�1)

d/2 4a

d! Vol(Sd
)

Ed +DµJ
µ

2⇥



A Puzzle

✤ Casini-Huerta-Myers (2011) try and fail to get this log 
from the hyperbolic space map.!

✤ They succeed using a sphere (Euclidean de Sitter) — 
no boundary;  they succeed also using the RT formula.!

✤ The result is consistent (predicted) by earlier work 
using the replica method and squashed cones  
Solodukhin (2008).

SE = ↵
Area(@A)

�d�2
+ . . .+ 4a(�1)d/2 ln

�

`
+ . . .



Can we succeed where CHM failed?

log of partition function;!
call it -W

Guess: universal contributions encoded in an effective !
action that reproduces the ”a’’ part of the trace anomaly.

⇢ =
e��H

tr e��H
)

Casimir energy

SE = � tr(⇢ ln ⇢) = �hHi+ ln tr(e��H)



Warm-Up: 2D Case

��W = � c

24⇡

Z

M
d2x

p
gR �� + 2

Z

@M
dy

p
�K ��

�

We want to deduce an effective action               from the trace anomaly!
                                                     hTµ

µ i =
c

24⇡
R

W [gµ⌫ ]

According to Polchinski, in the presence of a boundary, the most general 
form for the anomalous variation is 

The Euler characteristic for a 2d manifold with boundary!

K here is the trace of the extrinsic curvature.



The 2d effective action.

W[gµ⌫ , e
�2⌧gµ⌫ ] ⌘ W [gµ⌫ ]�W [e�2⌧gµ⌫ ]

We want to integrate         . !
In fact the best we can do is determine a difference:

��W

The answer is

W = � c

24⇡

Z

M
d2x

p
g

�
R[gµ⌫ ]⌧ � (@⌧)2

�
+ 2

Z

@M
dy

p
�K[gµ⌫ ]⌧

�

Various methods: ! 1) guess work !
! ! ! ! ! ! 2) dimensional regularization !
! ! ! ! ! ! 3) integral formula



Dimensional Regularization

Define              in                    dimensions.fW [gµ⌫ ]

f
W [gµ⌫ ] ⌘ � c

24⇡(n� 2)

Z

M
dnx

p
g R+ 2

Z

@M
dn�1

y

p
�K

�
n = 2 + ✏

Then

W[gµ⌫ , e
�2⌧gµ⌫ ] = lim

n!2

⇣
fW [gµ⌫ ]� fW [e�2⌧gµ⌫ ]

⌘

Trick employed by Brown and Cassidy (1977).  !
Relies on nice transformation properties of R under!
Weyl scaling.

under gµ⌫ ! e�2⌧gµ⌫ ,
p
gR ! e(2�n)⌧pgR+ total derivative



Entanglement of an Interval

✤ Consider an interval with endpoints u and v on the z plane 
along with the following map to the cylinder with 
coordinate w:!

!

✤ The cylinder has a periodic Euclidean time coordinate.!

✤ The reduced density matrix on the interval is mapped to the 
thermal density matrix on the cylinder with inverse 
temperature β.

e2⇡w/� =
z � u

z � v ) ⌧ = �1

2
ln


�

2⇡

✓
1

v � z
� 1

u� z

◆�
+ c.c.



Plan of Attack

SE = �hHi �Wcyl

Can be obtained from !
Schwarzian derivative!
which in turn can be !
derived from varying!
!
with respect to the metric.

Think of this term as

W[gµ⌫ , e
�2⌧gµ⌫ ]

W[�µ⌫ , e
�2⌧�µ⌫ ]� fW [�µ⌫ ]



Assembling the Pieces

�fW [�µ⌫ ] ⇠
c

3
ln

|v � u|
�

Comes from regulating!
infinite volume of !
the cylinder

Dim reg of !
extrinsic curvature

τ multiplying K !
in the effective action

SE ⇠ c

3
ln

|v � u|
� Holzhey, Larsen, Wilczek (1994)

�hHi ⇠ c

6
ln

|v � u|
�

W[�µ⌫ , e
�2⌧�µ⌫ ]|bulk ⇠ c

6
ln

|v � u|
�

W[�µ⌫ , e
�2⌧�µ⌫ ]|boundary ⇠ � c

3
ln

|v � u|
�



Remarks about 2d

✤ Two ways of picking apart the answer.  !

✤ EE comes from bulk terms on the cylinder. !

✤ EE comes purely from !

✤ One can use                              for three purposes: !

✤ to derive Schwarzian derivative !

✤ to compute the EE!

✤ to compute the Rényi entropies

fW [�µ⌫ ]

W[�µ⌫ , e
�2⌧�µ⌫ ]

Sn ⇠ c

6

✓
n+

1

n

◆
ln

|v � u|
�



Anomaly Action in General

“a” contribution to trace anomaly comes from the Euler character χ

��W = (�1)

d/2
2a�(M) + . . .

= (�1)

d/2 4a

d! Vol(Sd
)

✓Z

M
Ed�� �

Z

@M
Qd��

◆
+ . . .

CS like termEuler density

fW [gµ⌫ ] = (�1)

d/2 4a

(n� d)d! Vol(Sd
)

✓Z

M
En,d �

Z

@M
Qn,d

◆Then for dim reg, define

and W[gµ⌫ , e
�2⌧gµ⌫ ] = lim

n!d

⇣
fW [gµ⌫ ]� fW [e�2⌧gµ⌫ ]

⌘



4d effective action

W[gµ⌫ , e
�2⌧

gµ⌫ ] =
a

(4⇡)2

Z

M
d4x

p
g

⇥
⌧E4 + 4Eµ⌫(@µ⌧)(@⌫⌧) + 8(Dµ@⌫⌧)(@

µ
⌧)(@⌫

⌧) + 2(@⌧)4
⇤

� a

(4⇡)2

Z

@M
d3y

p
�


⌧Q4 + 4(K�

↵� �K

↵�)(@↵⌧)(@�⌧) +
8

3
⌧

3
n

�

Einstein tensorEuler density

CS like term: only place τ appears !
w/out a derivative in the bry

Bulk term figured in Komargodski-Schwimmer proof of the “a”-theorem

Boundary term is a new result.

normal !
derivative of τ



6d effective action (bulk)

E(2)µ⌫ ⌘ gµ⌫E4 + 8Rµ
⇢R

⇢⌫ � 4Rµ⌫R+ 8R⇢�R
µ⇢⌫� � 4Rµ

⇢�⌧R
⌫⇢�⌧ ,

Cµ⌫⇢� ⌘ Rµ⌫⇢� � gµ⇢R⌫� + gµ�R⌫⇢

where

Reproduces a result from Elvang, Freedman, Hung, Kiermaier, Myers, 
Theisen (2012).

W[gµ⌫ , e
�2⌧

gµ⌫ ](Bulk) =

a

3(4⇡)3

Z

M
d6x

p
g

n
�⌧E6 + 3E(2)

µ⌫ @
µ
⌧@

⌫
⌧ + 16Cµ⌫⇢�(D

µ
@

⇢
⌧)(@⌫

⌧)(@�
⌧)

+ 16Eµ⌫ [(@
µ
⌧)(@⇢

⌧)(D⇢@
⌫
⌧)� (@µ

⌧)(@⌫
⌧)⇤⌧ ]� 6R(@⌧)4

�24(@⌧)2(D@⌧)2 + 24(@⌧)2(⇤⌧)2 � 36(⇤⌧)(@⌧)4 + 24(@⌧)6
 

.



6d effective action (conformally flat)

P↵
� ⌘

�
K2 � tr(K2)

�
K↵

� � 2KK↵�K�� + 2K��K
↵�K�

�

where

The boundary term is a new result.

W[�µ⌫ , e
�2⌧

�µ⌫ ] = � a

16⇡3

Z

M
d6x

p
g

�
2(@⌧)2(@µ@⌫⌧)

2 � 2(@⌧)2(⇤⌧)2 + 3⇤⌧(@⌧)4 � 2(@⌧)6
 

� a

3(4⇡)3

Z

@M
d5y

p
�

h
� ⌧Q6[�µ⌫ ] + 48P↵

� (@↵⌧)(@
�
⌧) + 3Q4[�µ⌫ ](D̊⌧)2

+ 48K↵�(⇤̊⌧)(D̊↵@�⌧) + 24K(D̊↵@�⌧)
2 � 48K↵�(D̊

�
@

↵
⌧)(D̊�

@�⌧)

� 24K(⇤̊⌧)2 � 32K(D̊⌧)2⇤̊⌧ � 16K(@↵
⌧)(@�

⌧)(D̊↵@�⌧)

+ 16K↵�(@
↵
⌧)(@�

⌧)⇤̊⌧ + 32K↵�(D̊
↵
@

�
⌧)(D̊⌧)2 + 12K⌧

4
n

+ 12K(D̊⌧)4 + 24K(D̊⌧)2⌧2n + 48(⇤̊⌧)(D̊⌧)2(⌧n) + 16(⇤̊⌧)(⌧3n)

� 24(D̊⌧)2⌧3n � 36⌧n(D̊⌧)4 � 36

5
⌧

5
n

i

only τ !
in the bry



EE of the Ball

where

flat space

S1 ⇥Hd�1

A
B

SE = �hHi+W[�µ⌫ , e
�2��µ⌫ ]� fW [�µ⌫ ]

`

ds2 = �dt2 + dr2 + r2d⌦2
d�2 ,

= e2�
⇥
�dT 2 + `2(du2 + sinh2 u d⌦2

d�2)
⇤

e��
= coshu+ coshT/`



Assembling the Pieces: 4d

SE ⇠ �4a ln
`

�

�fW [�µ⌫ ] ⇠ �4a ln
`

�

W[�µ⌫ , e
�2��µ⌫ ]|boundary ⇠ 4a ln

`

�

W[�µ⌫ , e
�2��µ⌫ ]|bulk ⇠

✓
3

2
� 4

◆
a ln

`

�

�hHi ⇠ �3

2
a ln

`

�



Assembling the Pieces: 6d

SE ⇠ 4a ln
`

�

�hHi ⇠ 5

4
a ln

`

�

W [�µ⌫ , e
�2��µ⌫ ]|bulk ⇠

✓
�5

4
+ 4

◆
a ln

`

�

W[�µ⌫ , e
�2��µ⌫ ]|boundary ⇠ �4a ln

`

�

�fW [�µ⌫ ] ⇠ 4a ln
`

�



Technical Problem

Why can’t I give you the story in general dimension?

We have not been able to evaluate 
for                      reliably. 

fW [gµ⌫ ]

Order of limits issue !
(fixing the metric before or after !

 taking the n to d limit)

Computing W[gµ⌫ , e
�2�gµ⌫ ] becomes harder as dimension increases.

S1 ⇥Hd�1



Point of  View #1

W[�µ⌫ , e
�2⌧�µ⌫ ]|boundary

W[�µ⌫ , e
�2⌧�µ⌫ ]|bulk

�hHi+W[�µ⌫ , e
�2⌧�µ⌫ ]|bulk

W[�µ⌫ , e
�2⌧�µ⌫ ]|boundary � fW [�µ⌫ ]

We can make an invariant distinction between
and

Then computes the EE

.

while  comes purely from

Somewhat nicer — clean separation:!
Maps a problem in flat space to a problem in hyperbolic space. 

flat space and vanishes



Point of  View #2

�fW [�µ⌫ ] computes the EE and all the other terms cancel.

Consistent with Solodukhin’s result in 4d !
that the “a” contribution to the EE is proportional !
to χ of the entangling surface.

SE ⇠ . . .+ (�1)d/22a�(@A) ln
�

`
+ . . .

Somewhat discouraging:!
We tried to map the problem to hyperbolic space!
but somehow never got away from flat space.



Another Tale from the Edge



Thermal Corrections?

⇢(T ) =
e�H/T

tr(e�H/T )
The initial density matrix is !

not that of a pure state!

Entanglement entropy measures some combination !
of thermal entropy and quantum entanglement.

Why bother with thermal effects?

✤ Nice to be able to remove them.!
✤ Lessons to be learned from EE in non-traditional contexts.!
✤ Connection to black hole physics.



A Universal Result

In the                 limit, for a cap A !
of opening angle 2q on the S3, 

RT ⌧ 1

m is the mass gap, ~ 1/R!
g is the degeneracy of the 1st excited state

✤ Turns out to be true for any CFT in any dimension!!
✤ Subleading in a large N expansion.!
✤ The exp(-m/T) Boltzmann suppression should             

be true of any gapped QFT (Herzog-Spillane 2012).

(Herzog 2014)

SE(A, T )� SE(B, T ) = 2⇡gmR cot(✓) e

�m/T
+ o(e

�m/T
)

A

B

2q

R



Where does it come from?

Start with a thermal density matrix

(That r is mixed means we’re not really !
measuring quantum entanglement.)

Make a small T perturbative expansion

⇢(T ) =
e�H/T

tr(e�H/T )

where          creates the first excited state.

h (x) (y) log ⇢A(0)iNeed to calculate

 (x)





A Special Trick for CFTs

For CFTs and “A” a cap on a sphere, 

H is the integral of the tt component!
of the stress-energy tensor Tµn. 

Three point functions involving the stress tensor in CFTs are 
constrained by symmetry to take relatively simple forms.

h (x) (y) log ⇢A(0)i ! h (x) (y)Tµ⌫(0)i

� log ⇢A(0)

is unitarily related to the Hamiltonian on hyperbolic space.



Related Result Not Quite Right

where

SE(A, T )� SE(A, 0) = gmR Id(✓) e
�m/T + . . .

Id(✓) = 2⇡
Vol(Sd�2

)

Vol(Sd�1
)

Z ✓0

0

cos ✓ � cos ✓0
sin ✓0

sin

d�2 ✓ d✓

But for a scalar field, it turns out other methods match Id-2(q).

From the modular Hamiltonian method

WHAT’S GOING ON!?!

A

B

2q
R



A Resolution

!

✤ There exists a boundary term that can correct H.!

✤ When x = (d-2)/4(d-1) (the conformal coupling)!

!

✤ Suggests whenever CFT has operators of dimension 
d-2, H may get corrected by boundary terms.     

Id�2(✓) ! Id(✓)

Casini, Mazitelli, Teste (2014)

�H = 2⇡⇠

Z

@Hd�1

dd�2x
p
� �2



This particular case

The conformally coupled scalar

S = �1

2

Z

M
[(@�)2 + ⇠R�2]� ⇠

Z

@M
K�2

✤ To define the stress tensor.!
✤ To preserve Weyl scaling symmetry.

Boundary term in action translates into a boundary term in H.

trace of extrinsic curvature



In more detail

Let u be the radius of hyperbolic space.!
Let q be the polar angle on the sphere.

Constant u boundary different from pull back of constant q boundary.

K(✓)|⌧=0 =
d� 1

R
, K(u)|⌧=0 =

d� 2

R

t=t=0

u bry
q bry

Difference in K reproduces the shift in H.



Final Remarks

✤ For certain types of entanglement entropy, mapping to 
hyperbolic space is a useful tool.  !

✤ Hyperbolic space has a boundary, and the boundary 
has important effects.!

✤ Thermal corrections.!

✤ Log contribution to the zero T EE.
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