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Motivation

@ Causality of relativistic hydrodynamics: truncation of derivative expansion
at any fixed order breaks causality; causality is supposed to be recovered
by inclusion of all order derivative terms.

@ Linearized all order hydro: M. Lublinsky and E. Shuryak: Phys.Rev.D80
(2009) 065026. However, the fluid stress tensor was not fully constructed.
(derivative resummation for boost invariant hydro, see works of
Heller-Janik-- - - )

@ | will use fluid/gravity correspondence to resum all order derivative terms
(linearly) for conformal fluid, whose microscopic description is N' = 4
super-Yang-Mills theory.



Relativistic hydrodynamics: notations

Hydro is an effective long-wavelength description for most classical or quantum
many-body systems at finite temperature.

Constitutive relation: T, = (e + P)upuy + Pguy + My
Conservation law: V#T,, =0
M. dissipation tensor, derivable from microscopic theory.
Landau frame: Ty, u” = —euy = My, u” = 0.
CFT fluids in d-dim spacetime: (T, is conformal covariant)
o c=(d—-1)P;
o My, — I'I(m,>: traceless & transverse
My = 3A5AL (Nag + Nsa) = g Auw A Mag
® A,y = guv + uuuy, projection on spatial directions
Derivative expansion: M,y = =21,V ty + 2R (uV)V ( uy + O (0?)



Linearized all order hydro (Lublinsky & Shuryak)

Lublinsky & Shuryak Phys.Rev.D80 (2009) 065026

Linearization: V - - Vu(v'), but (Vu)?(x), similarly for g,
My = =20V i) + £ 07 Cluany g + pU V7 Cluayp + EVVE Cliany g
n=n(V2,uV), k=r(V2uV), p=p(V2uV), £=E(V? uV).

In Fourier space, n = 1w, 6%), & = r(w, @), p = p(w, a), € = £(w, ¢?)
n, K, p, & from thermal correlators of T, < AdS/CFT

Unfortunately, three channels in gravity perturbations are insufficient to
determine all four transport coefficient functions.

We now fixed this problem using fluid/gravity correspondence. (This talk!)



Fluid /gravity correspondence: overview

Policastro-Son-Starinets PRL 87 (2001) 081601, JHEP 0209 (2002) 043
Kovtun-Son-Starinets PRL 94 (2005) 111601

Buchel-Liu PRL93 (2004) 090602

Buchel-Myers-Paulos-Sinha PLB 669 (2008) 364-370

Igbal-Liu PRD 79 (2009) 025023

@ Hydrodynamic fluctuations can be regarded as gravitational perturbations of
black holes in asymptotic AdS spacetime

) 77?0 = ﬁ: universal for Einstein gravity (coupled to matters) duals

@ 2nd order hydrodynamics:
Baier-Romatschke-Son-Starinets-Stephanov JHEP 0804 (2008) 100
Bhattacharyya-Hubey-Minwalla-Rangamani JHEP 0802 (2008) 045

@ Towards higher-order hydrodynamics: this talk! (see 1507.02461 for complete
classification of 3rd order terms in the nonlinear level)



Novel realization of fluid /gravity correspondence

Bhattacharyya-Hubey-Minwalla-Rangamani JHEP 0802 (2008) 045

@ Systematic framework to construct nonlinear fluid dynamics: order by order in
boundary derivative expansion; transport coefficients completely determined

@ Fluid stress tensor + Conservation laws <— Solving Einstein equations in
asymptotic AdS spacetime

/d5xF R+12)+7/d4xFK[7]+sct,

167rGN

Emn = Run — 7GMNR —6Gyn = 0: Einstein equations,

2
Tuy = — lim r? 95

r—oo \/—77 SyHv :

@ Boosted AdSs black hole solution

AdS/CFT dictionary

ds? = —2uy, dxHdr — rzf(br)uuu,,dx“dx" +r (Mpv + upuy) dxPdx?,
f(ry=1-1/r*, T =1/(zxb), n"*uyu, = -1



@ Promote constants u, and b to arbitrary functions of boundary
coordinates x,. Then, do gradient expansion of them around one specific
point

UH(X) = U”(Xo) + (X — XO)avaUH(XO) + .. R
b(X) = b(XO) + (X — Xo)uvub(xo) + e

@ Metric corrections will be solved order by order in derivative expansion.
Once done, fluid dynamics can be constructed via AdS/CFT dictionary.

@ On-shell hydro: solutions to Einstein equations exit only when b and v,
satisfy certain relations (obtained by solving constraint components of
Einstein equations). The resultant stress tensor is conserved.



Derivative resummation in fluid/gravity correspondence

@ Drive perturbation: promote boosted AdSs black hole solution

ds® = —2u, (x)dxHdr — r?f(b(x)r)uu (x)uy (x)dxHdx” + r2A,, dxHdx”,
f(r)=1-1/r*, T=1/(zb), Buv = guv(x) + up(x)uv(x), xu = (v, x;)

@ Boundary metric perturbation during the above promotion: 1., — guu(x)

@ Instead of gradient expansion, we do linearization:

uu(x) = (=1 + ehgo/2, euj(x)) + O(e?), b(x) = by + eby(x) + O(e?)
g,ul/(x) = Nuv + Eh,u,u(x) + O(EZ)

@ The seed metric, i.e. the linearized version of ds? (bg = 1)

2
ds;

£

g =2drdv — r?f(r)dv? + r?§;dx’ dx/

.2 .4
— € |[2u;(x)drdx" + — ui(x)dvdx’ + —zbl(x)dv2
r r

1
+hoo(x)drdv + = hoo(x)dv? — r? by, (x)dx*dx"” | + O(€).
r



od T ds2.,, where

Bulk metric ds? = GuydxMdx" = ds2,

k L 2 . L
ds, .. =€ (—3hdrdv + —dv? + rPhéjdx dx! + = jidvdx’ + r2a,-jdx'de)
r r

under gauge fixing Gy =0, Gy o< uy, Tr [(G(O))71 G(l)] =0,

aijj is traceless & symmetric

@ [h, k, ji, ajl(r,x*)-->[h, k, ji, ajj]{uu, huv] <— Einstein equations

@ Boundary conditions:

@ regularity of metric correction (at horizon r = 1)
@ AdS requirement at r = oo (conformal boundary)
h<O(r%), k<O(r*), ji<O(r*), a; <O(r°)
. ) F—

@ Landau frame: M, u” =0
We will construct an off-shell hydro: to derive stress tensor, we only need to
solve dynamical components of Einstein equations. We finally check the
consistency of conservation laws of thus constructed stress tensor and the
remaining constraint components of Einstein equations.



Dynamical components of Einstein equations

E=0: 0=50h+ rafh, = h = 0 by boundary conditions,

1 1 1
En =0: 0k =2r0u+ 3r0v0u — 2r° Oy hok — gr62h00 -3 (8;9;h; — 0% hik)

2 . 1 1 )
+r20, hpy — 3731 - gra,-a,-a,-j - aa,aj,

3
E,;,=0: 0= rij,- — 30rj; + r38,8ja,-j+r (02u; — 8,-8u) + 3r28vu,- — §r2aihoo,

Ej=0: 0= (r7 — r3)82a,-j + (5r6 - r2)6,a,-j + 2r58v(9,o¢,-j + 3r48,,a,-j + r38204,-j

2 2
-r (8iakajk + 0jOkouik — §5ijak3/ak1) +(1—ror) (a-j,- + 0jji — 55031')

2 1
+(3r4 + r38v) (aiuj' + 8ju,- — §5U8u> + 3!’48\, (hlj — §6ijhkk)

1 2
—r3 (6,’8]'/100 — 5(50‘82/700) — 3!‘4 (6;h0j + 8jh0,‘ — §6U6kh0k)

2 2
+I‘3 (82h,-j — 8,‘8khjk - ajakhik + 8,‘8jhkk - §6U62hkk + 55,-J-6k8,hk,) .




underlined terms are source terms, composed of u;j(x), hy.(x) only. Under SO(3)
symmetry, all possible vector and tensor structures (traceless & symmetric)
constructed from u;(x), hu.u(x):

Vector Tensor (traceless & symmetric)
uj t[} = % (8,-uj + 8ju,‘ — %6U8u)
0;0u ts- = 8;8j8u — %5,—1-828u
hoj ts = 3 (9ihoj + djhoi — 5650khok)
aiakhgk t;} = 8;8j8kh0k — %(5,‘1'826;(/10/(
dihoo to = 9;07hoo — 3670 hoo
Oihik t,-? = 8,‘8jhkk — %50‘62/7;(;(
Okhik th = 3 (9i0khjx + 9j0khix — 58;0k01hkr)
0;0kOrhy tg = 3;8j8k81hk1 — %50’628}({9//’1“
t,-Jg- = h,‘j — %6Uhkk

Strategy: PDEs— ODEs by basis decomposition and Fourier transform:
Ji = Vauj + V20;0u + V3 hy; + V40;Ok hok + V50;hoo + V6O hik + V70khix + V30;0k01hyy

aj = 2Tity + Tot; +2Tat) + Tat) + Tsty + Teth + 2Tqt] + Tetd + Tot)



Fourier transform: (9y, ;) — (—iw, iq;). So, V;, Ti—> Vi(r,w, q?), Ti(r,w,q?).
We get partially coupled ODEs for {V;, T;}.
For viscosities, {V1, V2, T1, To}: (arXiv: 1406.7222, 1409.3095)

0 :r@f Vi — 30, Vy — ¢?r30, T1—3iwr? — ¢°r,
1 2
0=rd?Vs — 38, Vo + §r38, T — gq2r3a, To—r,

0=(r" = r?)O2Ty 4 (5r° — r?)8, T1 — 2iwr®8, Ty
= 3iwr* Ty + Vi — rd, Vi—iwr® + 3r%,
0=(r" — r?)2Ta 4 (5r° — r*)8, T2 — 2iwr®8, T»

1 2
—3iwr* Ty +2Vo — 2rd, Vo + gq2r3T2 - 5r3T1.

We have similar ODEs for the remaining V;'s and T;'s (arXiv: 1502.08044)



We find some constraints among decomposition coefficients V;, T;. The idea is to
make suitable linear combinations among V;'s (T;'s), which satisfy very similar ODEs
as those of V;'s (T;'s) without source terms. Under the boundary conditions, these
suitable combinations have to be zero. (arXiv: 1502.08044)

To— iwTs — q?T7 =0, iwVs 4+ ¢*Vy =0,
2T+ T3) = 2iwTs — q*(Ta+ Ta) =0, (Vi + V3) —2iwVs — ¢*(Va + Vi) =0,
2T+ T7) — iwTs —2¢*Tg = 0, 2V + Vo — iwVy — 2¢° Vg = 0,
1
Ts— T — iwTs —q°Tg =0, V5—V6—in4—q2V3+§r3:0

which are useful in rewriting the fluid stress tensor in a covariant way.



Near-boundary analysis

Near conformal boundary r = oo,

1 1 ¢t 2 1
V1—>—iwr3+(’)<7)7 T1—>;+%+O<—>,

1 1 t 2 1
V2—>—7r2+(9(7>, T2—>M+O(—).
3 r rt ro

For remaining Vj's and T;'s, we can make similar analysis:

| | |
v,-—>~~~+o(°gr), T — - +M+ : °g'+0(°g5r), i=3,4,..9
r r r

Constraints among t;'s

ty — iwt3 — g°t; = 0, 2(ty + t3) — 2iwts — q°(t2 + ta) = 0,
2(t6+t7)7iwt472q2t8 =0, t57t57iwt4fq2tg =0.

k — - -+ by direct integration near r = co



Fluid stress tensor via holographic dictionary
Balasubramanian-Kraus Commun.Math.Phys.208 (1999) 413,
Henningson-Skenderis JHEP 9807 (1998) 023 - - -

. 1 1
Ty = lim_ {*2’2 (KW — K43y — EguV(’Y)> +2log — 2 T }’
Too =3 —12by — 3hgo, Toi = Tio = —4u; + hoj,
y

1.
Ty = 8; (1 — 4by) + hyj + {Stlt,-} +4tpt7 + [8t3 + g (3¢°> — 7w2)] £

5.\ 4 1 1 2 2,6
+<4t4+£lw) tij+|:t5—m(q + 21w ):| +[4t6+m(13q —w) t;

1 7\ .8 1 4 4 2 2\ ,9
+{8t—§(w —|—3q)} +<4t 72)t,j+[4tg+£(7w —7q* —6u°q%) | t}



Through tensor algebras, Ty, = (e + P)upuy + Pguy + M,y with e =3P =3 (xT)3

M) = = 20¥ uty) = €V (u Vo) Vi £ 5007 Cliayp + PV Clun 5
+evev? C(Hal,>5+0u VaR(y where

n= *4t17 ¢ =—4t, 6=—6t=3(/2

[ 48 (ts + t6) + 24iw (t2 + 2t1) + w? (48tg -1)—¢%,
4

p=-3 [12(t2 + t3) + iw(1 — 241g)], 5 (7—288tg)

viscosity functions: n(w, g?), ¢(w, g?); gravitational susceptibility of the fluid (GSF):
H(wa qz)r Py 57 0

So far, we establish a map between the dynamical components of Einstein equation
and transport coefficients. T, is off-shell. We checked that constraint components of
Einstein equations E,, = E,; = 0 reproduce V# T, = 0.

Notice: to determine values of transport coefficients, we have to solve these ODEs.



Results I: hydro expansion

@ In hydro limit w, g < 1, viscosities and GSFs are expandable

1 1
n 1+7(2—In2)lw—§q —@[67r—7r +12(2-3In2+1n*2)]w® +

1
(=g (5-m—22) 4,

) )

1 1 3
/i:2+1(5+7r—6ln2)iw+-~~, p=2+-, £E=In2—=, 6= =C.

@ 1,/s = 1/(4n); relaxation time g = (2 — In2)/2

@ sound wave dispersion relation gets correction

1 , 1
w=+—qg——q°* 3—2In2 —— (7 —24+24|n2—12|n 2 +
\/§q 6 24\/( )8~ geq (7 )a



Results Il: viscosity functions
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Viscosity functions 1 and ¢ vs g% at w =0

@ Viscosities vanish at large momentum, necessary for causality

@ Viscosities oscillate when increasing momentum, consistent with expectation
that viscosities have infinitely many poles in complex momentum space

@ Weak dependence on spatial momentum, so dissipation is quasi-local in space

@ ( is suppressed with respect to 7.



Results Ill: memory function

n(uu)(t) = _/ dt’Zﬁ(t - tlv qz)v<,uuu>(t,) +-

1 (e} .

2 2\ —iwt .
t,q°) = —/ w,q°)e dw : memory function;
fi(t, q°) = | n(w, q%) y

Causal theory requires that I,y (t) should be affected only by the state of the
system in the past. Equivalently, memory function 7j(t — t’) ~ ©(t — t’).

i
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. W t
-1 1 3 4
0
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For a causal theory, we have

t
|_|<“V>(t) = 7/ dt’2ﬁ(t7 t/,q2)V<#Ul,>(tl)+"'

A typical memory function-based formalism would set the low limit of above integral
to zero: —oo — 0. (Kadanoff & Martin Annals Phys. 24 (1963) 419).

t
As amodel : My, (t) = —/ dt’'27(t — t/, q2)V(uuy)(t') 4+
0
= initial value problem V* T, = 0 well-defined

We also computed values of GSFs for generic momenta: some of them do not vanish
at large momenta, encoding the interference between thermal physics and vacuum pair

production, as seen from thermal correlators.



@ Two-point correlators from constitutive relation for T,,. To correctly recover
the dispersion relations in shear and sound channels (as seen from these
two-point correlators), we have to make use of the energy momentum
conservation.

@ Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient
resummation arXiv: 1504.01370
@ For an infinitesimal Gauss-Bonnet coupling, we worked out Gauss-Bonnet

corrected viscosities ngl), ¢, We also did inverse Fourier transform and
found that (1) (also (1)) still has no support in the future.

@ Einstein-Gauss-Bonnet gravity is causal for an infinitesimal Gauss-Bonnet
coupling, consistent with previous conclusions.



Summary

@ We have consistently determined T, of a relativistic conformal fluid N =4
SYM at T # 0). We found that all order derivative terms in T, are fully
encoded in two momenta-dependent viscosity functions n(w, %) and ¢(w, %),
and four momenta-dependent GSFs (k, p, &, 0).

@ At large momenta, the viscosities vanish, as required by causality of relativistic
fluid dynamics. Due to infinitely many time derivatives, we turn to memory
function approach and make initial value problem well-defined. The infinitely
many time derivative was then absorbed into the complicated memory function.
The memory function has no support in the future time, implying recovery of
causality.



Thanks for your attention!
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