ALGEBRAS IN MONOIDAL CATEGORIES
MESSAGE: algebras in monoidal categories are natural and nice
Possible motivations:

- Express similarities:
 - Traditionally: Hopf algebras as generalizations of group algebras
 - In fact: group = Hopf algebra in Set

- Disclose fake peculiarities: e.g. non-associativity:
 - Octonions = associative algebra in \(\mathbb{Z}_2^3 \)-\text{Vect}

- Increase degree of familiarity:
 - Beilinson-Drinfeld chiral algebra = Lie algebra in some category of \(\mathcal{D} \)-modules

 - Vertex algebra (\(= \) B-D chiral algebra on the formal disk)
 = singular commutative associative algebra in certain functor category
POSSIBLE MOTIVATIONS:

- express similarities:

 traditionally: Hopf algebras as generalizations of group algebras

 in fact: group = Hopf algebra in Set

- disclose fake peculiarities: e.g. non-associativity:

 octonions = associative algebra in $\mathbb{Z}_2 \times 3\text{-}Vect$

- present in applications:

 coend Hopf algebras for 3-mf invariants and MCG-reps

 coalgebras for cloning operations in quantum mechanics

 Frobenius algebras for classifying full CFTs associated with given chiral CFT

SPECIFIC MOTIVATION:

- bulk state space of a full CFT as ... Frobenius algebra in $\mathbb{Z}(C) \simeq C \boxtimes C^{rev}$

CLAIM: allows to construct bulk fields correlation functions on any closed world sheet
Plan

Algebras in monoidal categories

PLAN

- algebras
 - Frobenius algebras
 - Hopf algebras
 - weak Hopf algebras
 - Lie algebras
- sample results
- handle Hopf algebras
- conformal field theory
- bulk state spaces in CFT
- bulk field correlation functions
- appendix
\(k \)-algebra = vector space with multiplication and unit element

\[\text{category } \mathcal{V}ect_k : \]
- objects = vector spaces over \(k \)
- morphisms = linear maps
- monoidal structure:
 - tensor product \(\otimes_k \) of vector spaces with tensor unit \(1 = k \)

interpret
- multiplication \(\equiv \) bi linear map \(A \times A \to A \) \(\sim \) linear map \(m : A \otimes_k A \to A \)
- unit element \(1_A \in A \) \(\sim \) linear map \(\eta : k \to A \quad \eta(c) = c \cdot 1 \)

\[\implies \text{\(k \)-algebra} = \text{algebra object } (A, m, \eta) \in \mathcal{V}ect_k \]
associative algebra = object A + morphism

$m : A \otimes A \to A$
A

associative algebra = object A + morphism

$m : A \otimes A \rightarrow A$

such that

$m \circ (m \otimes \text{id}) = m \circ (\text{id} \otimes m)$
Algebras

- **associative algebra** = object A + morphism

 $$m : \ A \otimes A \rightarrow A$$

- **unital algebra** (A, m, η):

 $$\eta : \ 1 \rightarrow A$$

 $$m \circ (\eta \otimes \text{id}) = \text{id} = m \circ (\text{id} \otimes \eta)$$

- **natural setting**: strict monoidal categories $(C, \otimes, 1)$
Coalgebras

Algebras in monoidal categories

- **coassociative coalgebra** \((C, \Delta)\):

 \[
 \Delta : \ A \to A \otimes A
 \]

 \[
 (\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta
 \]

- **co-unital coalgebra** \((C, \Delta, \varepsilon)\):

 \[
 \varepsilon : \ A \to 1
 \]

 \[
 (\varepsilon \otimes \text{id}) \circ \Delta = \text{id} = (\text{id} \otimes \varepsilon) \circ \Delta
 \]

- **natural setting**: strict monoidal categories \((C, \otimes, 1)\)
Frobenius algebras

Algebras in monoidal categories

- **Algebra**:
 - Diagrams showing algebraic structures.

- **Coalgebra**:
 - Diagrams showing coalgebraic structures.

- **Frobenius algebra**: algebra and coalgebra and coproduct a **bimodule morphism**:
 - Diagrams illustrating the properties of Frobenius algebras and the associated bimodule morphism.
Frobenius algebras

Algebra:

\[
\begin{align*}
\begin{array}{ccc}
\vdots & = & \vdots \\
\end{array}
\end{align*}
\]

Coalgebra:

\[
\begin{align*}
\begin{array}{ccc}
\vdots & = & \vdots \\
\end{array}
\end{align*}
\]

Frobenius algebra: algebra and coalgebra

and coproduct a **bimodule morphism**:

\[
\begin{align*}
\begin{array}{ccc}
\vdots & = & \vdots \\
\end{array}
\end{align*}
\]

equivalent to existence of non-degenerate invariant form

if C is rigid
Frobenius algebras

- **Frobenius** algebra: algebra and coalgebra and coproduct a **bimodule morphism**:

 \[
 Z \quad \text{isymmetric Frobenius algebra:}
 \]

 \[
 \text{natural setting: monoidal categories } (C, \otimes, 1)
 \]

- **symmetric** Frobenius algebra:

 \[
 A^\lor
 \]

- **special** Frobenius algebra:

 \[
 \neq 0
 \]

 \[
 \text{natural setting: sovereign rigid monoidal categories}
 \]
Hopf algebras

Algebras in monoidal categories

- **bi** algebra: algebra and coalgebra
 and coproduct and counit algebra morphisms:

![Diagram of algebra morphisms]

- **Hopf** algebra: bialgebra with antipode

![Diagram of Hopf algebra morphisms]

natural setting: braided monoidal categories
Hopf algebras

- **bi** algebra: algebra and coalgebra
 and coproduct and counit algebra morphisms:

- **Hopf** algebra: bialgebra with antipode

- left integral on H: $\Lambda \in \text{Hom}(1, H)$ s.t. $m \circ (\text{id}_A \otimes \Lambda) = \Lambda \circ \varepsilon$
Hopf algebras

bi algebra: algebra and coalgebra

and coproduct and counit algebra morphisms:

\[
\begin{align*}
\text{coproduct} & : \quad (\Delta \otimes \text{id}) \circ \lambda = \eta \circ \lambda \\
\text{counit} & : \quad \lambda \in \text{Hom}(H, 1) \quad \text{s.t.} \quad (\lambda \otimes \text{id}_H) \circ \Delta = \eta \circ \lambda
\end{align*}
\]
NB: weak Hopf algebras

A weak Hopf algebra \((H, m, \eta, \Delta, \varepsilon, s)\):

- \(\Delta\) not nec. unital
- \(\varepsilon\) not nec. algebra morphism
- Weak antipode

Note: \(\varepsilon\) not nec. unital and \(\Delta\) not nec. morphism.
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- antisymmetry

\[\tau = -\]

- Jacobi identity

\[+ + = 0 \]

natural setting: symmetric monoidal additive categories $(C, \otimes, 1, \tau)$

examples:

- Lie superalgebra = Lie algebra in $S\text{Vect} = \mathbb{Z}_2\text{-Vect}$
- color Lie algebra = Lie algebra in $\Gamma\text{-Vect}$ (Γ abelian group with skew bicharacter)
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- antisymmetry

 \[\tau = - \]

- Jacobi identity

 \[+ + = 0 \]

natural setting: symmetric monoidal additive categories $(C, \otimes, 1, \tau)$

examples:

- Hom-Lie algebra in C (Jacobi identity modified by an automorphism)

 \[= \text{Lie algebra in } \mathcal{H}C \]
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- **antisymmetry**

 ![antisymmetry_diagram]

- **two Jacobi identities**

 ![two_jacobi_diagrams]

natural setting: braided monoidal additive categories $(C, \otimes, 1, c)$

example: commutator algebras satisfying antisymmetry
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- antisymmetry

- Jacobi identity/ies (C symmetric/braided)

more conceptual approaches for braided C:

- quantum Lie bracket related to adjoint action for Hopf algebras in C
 compatible with a coalgebra structure of L
 satisfies a generalized Jacobi identity
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- antisymmetry

- Jacobi identity/ies (C symmetric/braided)

- more conceptual approaches for braided C:
 - quantum Lie bracket related to adjoint action for Hopf algebras in C
 - family of n-ary products in $\Gamma\text{-Vect}$ (Γ abelian group with bicharacter)

References:
- Pareigis 1997
- Kharchenko 1998
Lie algebra: object L with morphism $\ell \in \text{Hom}_C(L \otimes L, L)$ s.t.

- **antisymmetry**

- **Jacobi identity/ies** (C symmetric/braided)

more conceptual approaches for braided C:

- **quantum Lie bracket** related to adjoint action for Hopf algebras in C

- **family of n-ary products in $\Gamma\text{-Vec}$** (Γ abelian group with bicharacter)

 e.g. primitive elements of a Hopf algebra in $\Gamma\text{-Vec}$
 e.g. derivations of an algebra in $\Gamma\text{-Vec}$

 reduces to color Lie algebras for skew bicharacter

PAREIGIS 1997
consider C symmetric rigid monoidal idempotent-complete \mathbb{k}-linear abelian

\begin{itemize}
 \item F Facts:
 \begin{itemize}
 \item trivial abelian Lie algebra $(1, 0)$
 \item commutator algebras $(A, m - m \circ \tau)$
 \item Frobenius algebra $(U \otimes U^\vee, id_U \otimes dU \otimes id_{U^\vee})$
 Morita equivalent to $(1, id)$
 \item $U \otimes U^\vee \cong 1 \oplus R$ and $\text{dim}(U) \neq 0$ \implies R inherits Lie algebra structure
 e.g. adjoint representation $\in \mathfrak{sl}_n(\mathbb{k})$-mod
 e.g. $R_{2024} \in M_{23}$-mod or M_{24}-mod
 e.g. for $U = st \in \mathfrak{gl}(m|n)$-mod for $m \neq n$
 \item L simple as object (and non-trivial) \implies simple as Lie algebra
 \item $U \otimes U^\vee \cong 1 \oplus R$ and $\text{dim}(U) \neq 0$ and U generating C
 \implies every $V \in C$ carries natural R-action (but no handle on all of R-mod)
 \end{itemize}
\end{itemize}
consider \mathcal{C} symmetric rigid monoidal idempotent-complete \mathbb{k}-linear abelian

Facts:

- trivial abelian Lie algebra $(\mathbf{1}, 0)$
- commutator algebras $(A, m - m \circ \tau)$
- Frobenius algebra $(U \otimes U^\vee, \text{id}_U \otimes d_U \otimes \text{id}_{U^\vee})$

 Morita equivalent to $(\mathbf{1}, \text{id}_1)$

- $U \otimes U^\vee \cong \mathbf{1} \oplus R$ and $\dim(U) \neq 0$ \implies R inherits Lie algebra structure

 e.g. adjoint representation $\in \mathfrak{sl}_n(\mathbb{k})$-$\text{mod}$

 e.g. $R_{2024} \in M_{23}$-mod or M_{24}-mod

 e.g. for $U = \text{st} \in \mathfrak{gl}(m|n)$-$\text{mod}$ for $m \neq n$

- L simple as object (and non-trivial) \implies simple as Lie algebra

- $U \otimes U^\vee \cong \mathbf{1} \oplus R$ and $\dim(U) \neq 0$ and U generating \mathcal{C}

 \implies every $V \in \mathcal{C}$ carries natural R-action (but no handle on all of R-mod)

- desirable application: group-theoretical coefficients for Feynman diagrams

Cvitanović 1976
Sample results

Algebras in monoidal categories

- \mathcal{C} fusion category and \mathcal{M} semisimple indecomposable \mathcal{C}-module category
 $\implies \mathcal{M} \cong A\text{-mod}_C$ for algebra $A \in \mathcal{C}$
 [Ostrik 2003]

- \mathcal{M} in addition endowed with module trace $\implies A$ Frobenius
 [Schaumann 2013]

- \mathcal{C} modular tensor category
 \implies finite number of Morita classes of simple symmetric special Frobenius algebras
 [F-Runkel-Schweigert 2004]

- \mathcal{C} ribbon and A commutative symmetric special Frobenius
 \implies
 - category $A\text{-mod}^\ell_{\text{oc}}$ of local A-modules ribbon
 - \mathcal{C} semisimple $\implies A\text{-mod}^\ell_{\text{oc}}$ semisimple
 - \mathcal{C} modular and A simple $\implies A\text{-mod}^\ell_{\text{oc}}$ modular

- \mathcal{C} rigid monoidal and A special Frobenius
 \implies every $M \in A\text{-mod}_C$ is submodule of an induced module $(A \otimes U, m \otimes \text{id}_U)$

- \mathcal{C} modular and A symmetric special Frobenius:
 \implies every $X \in A\text{-bimod}_C$ is sub-bimodule of a braided-induced module $U \otimes^+ A \otimes^- V$
Sample results

- C fusion category and \mathcal{M} semisimple indecomposable C-module category
 $\implies \mathcal{M} \cong A\text{-mod}_C$ for algebra $A \in C$
 \text{Ostrik 2003}

- \mathcal{M} in addition endowed with module trace $\implies A$ Frobenius
 \text{Schaumann 2013}

- C modular tensor category
 \implies finite number of Morita classes of simple symmetric special Frobenius algebras
 \text{J-Runkel-Schweigert 2004}

- C ribbon and A Azumaya
 $\implies 1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C)$ exact
 \text{Van Oystaeyen-Zhang 1998}

- C modular and A symmetric special Frobenius:
 A Azumaya $\iff \dim C \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)_{ij}$ permutation matrix
 \implies exact sequence $1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C)$

- C modular and A simple symmetric special Frobenius
 \implies bimodule fusion rules $K_0(A\text{-bimod}_C) \otimes \mathbb{Z} C$
 isomorphic as C-algebra to $\bigoplus_{i,j \in I} \text{End}_C(\text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A))$
Algebras in monoidal categories

- \(C \) fusion category and \(\mathcal{M} \) semisimple indecomposable \(C \)-module category
 \[\Rightarrow \mathcal{M} \simeq A\text{-mod}_C \text{ for algebra } A \in C\]

- \(\mathcal{M} \) in addition endowed with module trace \[\Rightarrow A \text{ Frobenius}\]

- \(C \) modular tensor category
 \[\Rightarrow \text{finite number of Morita classes of simple symmetric special Frobenius algebras}\]

- \(H \) Hopf algebra with \(s \) invertible and (co)integral s.t. \(\lambda \circ \Lambda \in k^\times \)
 \[\Rightarrow H \text{ Frobenius with same algebra structure}\]

- Hopf algebras have symmetric self-braiding:
 \[\text{Schauenburg } 1998\]
example: 1-holed torus in category of 3-cobordisms with corners
(1-morphism in bicategory)

Yetter 1995
Crane-Yetter 1999
example: 1-holed torus in category of 3-cobordisms with corners

example:

\[
\text{coend } L = \int_{U \in \mathcal{D}} U \otimes U^\vee
\]

in any finite abelian \(k\)-linear ribbon category \(\mathcal{D}\)

exists and carries a natural structure of a Hopf algebra in \(\mathcal{D}\)

endowed with left integral and Hopf pairing \(\varpi_L\)

\[
m_L \circ (\iota_U \otimes \iota_V) := \iota_V \otimes \iota_U \circ (\gamma_{U,V} \otimes \text{id}_V \otimes \text{id}_U) \circ (\text{id}_U \otimes c_{U,V} \otimes V) \\
\Delta_L \circ \iota_U := (\iota_U \otimes \iota_U) \circ (\text{id}_U \otimes b_U \otimes \text{id}_U) \\
\eta_L := \iota_1 \quad \varepsilon_L \circ \iota_U := d_U \\
s_L \circ \iota_U := (d_U \otimes \iota_U) \circ (\text{id}_U \otimes c_{U,V} \otimes U \otimes \text{id}_U) \circ (b_U \otimes c_{U,V} \otimes U) \\
\varpi_L \circ (\iota_U \otimes \iota_V) := (d_U \otimes d_V) \circ [\text{id}_U \otimes (c_{V,U} \circ c_{U,V} \otimes \text{id}_V)]
\]

special case: \(\mathcal{D}\) modular \(\implies L = \bigoplus_{i \in \mathcal{I}} S_i^\vee \otimes S_i\)
Example: 1-holed torus in category of 3-cobordisms with corners.

\(\text{coend } L = \int_{U \in \mathcal{D}} U \otimes U^\vee \) in any finite abelian \(\mathbb{k} \)-linear ribbon category \(\mathcal{D} \)
example: 1-holed torus in category of 3-cobordisms with corners

example:
\[\text{coend } L = \int_{U \in \mathcal{D}} U \otimes U^\vee \] in any finite abelian \(\mathbb{k} \)-linear ribbon category \(\mathcal{D} \)
Example: 1-holed torus in category of 3-cobordisms with corners

Example:

$$\text{coend } L = \int_{U \in \mathcal{D}} U \otimes U^\vee$$

in any finite abelian \(k\)-linear ribbon category \(\mathcal{D}\)

- **for \(\mathcal{D} \text{ factorizable:}** (e.g. \(\mathcal{D} = H\text{-mod} \) for factorizable ribbon Hopf algebra \(H\))
 - integral two-sided
 - Hopf pairing non-degenerate
 - projective rep \(\pi_{g,m}\) of \(\text{Map}_\Sigma\) on \(\text{Hom}_\mathcal{D}(L \otimes g, U_1 \otimes \cdots \otimes U_m)\)

Lyubashenko 1995
example: 1-holed torus in category of 3-cobordisms with corners

example:

$$\text{coend } L = \int^{U \in \mathcal{D}} U \otimes U^\vee$$

in any finite abelian \mathbb{k}-linear ribbon category \mathcal{D}

for \mathcal{D} factorizable: (e.g. $\mathcal{D} = H\text{-mod}$ for factorizable ribbon Hopf algebra H)

- integral two-sided
- Hopf pairing non-degenerate
- projective rep $\pi_{g,m}$ of Map_Σ on $\text{Hom}_\mathcal{D}(L \otimes g, U_1 \otimes \cdots \otimes U_m)$

- e.g. modular S-transformation $= \text{composition with automorphism}$

$$S_L := (\varepsilon_L \otimes \text{id}_L) \circ Q_{L,L} \circ (\text{id}_L \otimes \Lambda_L)$$
example: 1-holed torus in category of 3-cobordisms with corners

example:

\[
\text{coend } L = \int_{U \in \mathcal{D}} U \otimes U^\vee \quad \text{in any finite abelian } \mathbb{k}-\text{linear ribbon category } \mathcal{D}
\]

for \(\mathcal{D} \) factorizable: (e.g. \(\mathcal{D} = H\text{-mod} \) for factorizable ribbon Hopf algebra \(H \))

- integral two-sided
- Hopf pairing non-degenerate
- projective rep \(\pi_{g,m} \) of \(\text{Map}_\Sigma \) on \(\text{Hom}_\mathcal{D}(L \otimes g, U_1 \otimes \cdots \otimes U_m) \)

every \(V \in \mathcal{D} \) has natural \(L \)-module structure \((V, \mathcal{L}_V) \)

\[
\mathcal{L}_V := (\varepsilon_L \otimes \text{id}_V) \circ Q^L_V
\]
2d conformal quantum field theory (CFT) in a nutshell:

- chiral CFT:
 - chiral symmetry algebra – conformal vertex algebra \mathcal{V} (say)
 - category C of \mathcal{V}-representations
 - for sufficiently nice \mathcal{V}: C factorizable finite ribbon category
 - conformal blocks – sheaves on moduli spaces of curves with marked points

[cf. Belkale’s talk]
2d CFT in a nutshell:

- **chiral CFT:**
 - chiral symmetry algebra – conformal vertex algebra \mathcal{V} (say)
 - category \mathcal{C} of \mathcal{V}-representations
 - for sufficiently nice \mathcal{V}: \mathcal{C} factorizable finite ribbon category
 - conformal blocks – sheaves on moduli spaces of curves with marked points

- **full local CFT:**
 - conformal world sheet – possibly with boundary, possibly non-orientable
 - **holomorphic factorization**: bulk fields $\in \mathcal{C} \otimes \mathcal{C}^{rev}$
 - local correlation functions:
 specific sections in the chiral blocks for complex double of the world sheet
2d CFT in a nutshell:

- **Chiral CFT:**
 - chiral symmetry algebra – conformal vertex algebra \(\mathcal{V} \) (say)
 - category \(\mathcal{C} \) of \(\mathcal{V} \)-representations
 - for sufficiently nice \(\mathcal{V} \): \(\mathcal{C} \) factorizable finite ribbon category
 - conformal blocks – sheaves on moduli spaces of curves with marked points

- **Full local CFT:**
 - conformal world sheet – possibly with boundary, possibly non-orientable
 - holomorphic factorization: bulk fields \(\in \mathcal{C} \otimes \mathcal{C}^{\text{rev}} \)
 - local correlation functions:
 - specific sections in the chiral blocks for complex double of the world sheet
 - consistent boundary conditions \(\leadsto \) bulk fields \(\in \mathcal{Z}(\mathcal{C}) \)
 - take \(\mathcal{C} \) factorizable: \(\mathcal{C} \otimes \mathcal{C}^{\text{rev}} \simeq \mathcal{Z}(\mathcal{C}) \)
 - in particular: bulk state space \(\mathcal{F} \in \mathcal{C} \otimes \mathcal{C}^{\text{rev}} \)
 - torus partition function \(Z_T(\tau) = \text{Virasoro character of } \mathcal{F} \)
The bulk state space F

Bulk state space $F \in C \otimes C^{\text{rev}}$

- simplest situation:

 - C modular tensor category and F charge conjugation bulk state space

 \[
 F = F_C^{\text{rat.}} \equiv \bigoplus_{i \in I} S_i^\vee \boxtimes S_i
 \]

 \[Z_T = \sum_{i \in I} \chi_i^* \chi_i\]

- indeed appears as part of a consistent full CFT for any MTC C

Felder-Fröhlich-J-Schweigert 2000
The bulk state space F

Bulk state space $F \in C \otimes C^{rev}$

- simplest situation:

 C modular tensor category and F charge conjugation bulk state space

 $$F = F_{C}^{rat.} \equiv \bigoplus_{i \in I} S_{i}^{\vee} \boxtimes S_{i}$$

 $$Z_{T} = \sum_{i \in I} \chi_{i}^{*} \chi_{i}$$

- interpretation: combine every object of C with its dual (\textast\, charge conjugate) accounting for *all relations* among objects

- proper concept: coend $F = \int^{U \in C} U \boxtimes U^{\vee} \in C \otimes C^{rev}$
Bulk state space $F \in C \boxtimes C^{\text{rev}}$

- simplest situation:
 C modular tensor category and F charge conjugation bulk state space

$$F = F_C^{\text{rat.}} \equiv \bigoplus_{i \in I} S_i^\vee \boxtimes S_i$$

$$Z_T = \sum_{i \in I} \chi_i^* \chi_i$$

- interpretation: combine every object of C with its dual (= charge conjugate) accounting for all relations among objects

- proper concept: coend $F = \int^{U \in C} U \boxtimes U^\vee \in C \boxtimes C^{\text{rev}}$

 object together with dinatural family of morphisms $\nu_U^F : U \boxtimes U^\vee \to F$

 defined by universal property

 C semisimple (thus modular): $F = F_C^{\text{rat.}}$

 $C = H\text{-mod}$ for factorizable ribbon Hopf C-algebra:

 $F =$ coregular bimodule $H^* \in H\text{-bimod} \simeq C \boxtimes C^{\text{rev}}$
\mathcal{C} semisimple (RCFT):

$F_C^{\text{rat.}} = Z(1)$ full center
The bulk state space F

\mathcal{C} semisimple (RCFT):

- Any bulk state space is of the form $Z(A)$ for $A \in \mathcal{C}$ simple symmetric special Frobenius algebra.

$$Z(A) \cong \bigoplus_{i,j \in I} (S_i \otimes S_j^\vee) \oplus z_{ij}(A)$$

with

$$z_{ij}(A) = \dim_{\mathbb{C}}(\text{Hom}_{\mathcal{A}|\mathcal{A}}(S_i \otimes^+ A \otimes^\vee S_j, A))$$

commutative cocommutative symmetric Frobenius algebra in $\mathcal{C} \boxtimes \mathcal{C}^{\text{rev}}$
The bulk state space F

\mathcal{C} semisimple (RCFT):

- any bulk state space is of the form $Z(A)$ for $A \in \mathcal{C}$ simple symmetric special Frobenius algebra

\[
Z(A) \cong \bigoplus_{i,j \in I} (S_i \boxtimes S_j^\vee) \oplus z_{ij}(A)
\]

with

\[
z_{ij}(A) = \dim \mathbb{C}(\text{Hom}_{\mathcal{A}} A (S_i \otimes^+ A \otimes^- S_j^\vee, A))
\]

commutative cocommutative symmetric Frobenius algebra in $\mathcal{C} \boxtimes \mathcal{C}^{\text{rev}}$

Physics terminology:

- multiplication on F formalizes operator product of bulk fields
- Frobenius pairing formalizes non-degeneracy of two-point correlators of bulk fields on the sphere
- (co-)commutativity implements monodromy invariance of correlators

\[
\text{· · · · · ·}
\]
The bulk state space F

C semisimple (RCFT):

- **any** bulk state space is of the form $Z(A)$ for $A \in C$ simple symmetric special Frobenius algebra

$$Z(A) \cong \bigoplus_{i,j \in I} \left(S_i \boxtimes S_j^\vee \right) \otimes z_{ij}(A)$$

with

$$z_{ij}(A) = \dim_C(\text{Hom}_{A|A}(S_i \otimes^+ A \otimes^- S_j^\vee, A))$$

commutative cocommutative symmetric Frobenius algebra in $C \boxtimes C^\text{rev}$

general case:

- set $m_F \circ (\iota_U^F \otimes \iota_V^F) := \iota_{U^\vee \otimes U} \circ (\gamma_{U,V} \boxtimes c_{U,V})$ with $\gamma_{U,V} : U^\vee \otimes V^\vee \xrightarrow{\cong} (V \otimes U)^\vee$

$\eta_F := \iota_{\mathbb{1}}^F$

$\langle F, m_F, \eta_F \rangle$ is commutative associative unital algebra in $C \boxtimes C^\text{rev}$
The bulk state space F

- **C** semisimple (RCFT):
 - any bulk state space is of the form $Z(A)$ for $A \in C$ simple symmetric special Frobenius algebra
 - $Z(A) \cong \bigoplus_{i,j \in I} (S_i \boxtimes S_j^\vee) \oplus z_{ij}(A)$ with $z_{ij}(A) = \dim_C(\text{Hom}_{A|A}(S_i \otimes^+ A \otimes^− S_j^\vee, A))$

- commutative cocommutative symmetric Frobenius algebra in $C \boxtimes C^{\text{rev}}$

- general case:
 - set $m_F \circ (\iota_U^F \otimes \iota_V^F) := \iota_V^F \otimes_U \circ (\gamma_{U,V} \boxtimes c_{U,V})$
 - $\eta_F := \iota_1^F$
 - (F, m_F, η_F) is commutative associative unital algebra in $C \boxtimes C^{\text{rev}}$

- **$C = H$-mod** (with H not necessarily semisimple)
 - also symmetric Frobenius and cocommutative

$\text{Schweigert-Stigner 2012}$
The bulk state space F

- C semisimple (RCFT):
 - any bulk state space is of the form $Z(A)$ for $A \in C$ simple symmetric special Frobenius algebra
 - $Z(A) \cong \bigoplus_{i,j \in I} (S_i \boxtimes S_j^\vee) \oplus z_{ij}(A)$ with $z_{ij}(A) = \dim \mathbb{C} \left(\text{Hom}_{A|A}(S_i \otimes^+ A \otimes^- S_j^\vee, A) \right)$
 commutative cocommutative symmetric Frobenius algebra in $C \boxtimes C^{\text{rev}}$

- general case:
 - set $m_F \circ (\iota_U^F \otimes \iota_V^F) := \iota_U^F \otimes U \circ (\gamma_{U,V} \boxtimes c_{U,V})$
 $\gamma_{U,V} : U^\vee \otimes V^\vee \xrightarrow{\cong} (V \otimes U)^\vee$
 - set $\eta_F := \iota_1^F$
 - (F, m_F, η_F) is commutative associative unital algebra in $C \boxtimes C^{\text{rev}}$

- $C = H \text{-mod}$ (with H not necessarily semisimple)
recall: handle Hopf algebra \(L = \int_{U \in \mathcal{D}} U \otimes U^\vee \in \mathcal{D} \)

recall: partial monodromy action \(\kappa_U^L \) of \(L \) on \(U \in \mathcal{D} \)

recall: composition with automorphism \(S_L \) gives modular S-transformation
input: bulk handle Hopf algebra \(K = \int_{X \in C \boxtimes C^{rev}} X \otimes X^\vee \in C \boxtimes C^{rev} \)

input: partial monodromy action \(\varpi^K_X \)
input: bulk handle Hopf algebra \(K = \int_{X \in C \boxtimes C^{rev}} X \otimes X^\vee \in C \boxtimes C^{rev} \)

input: partial monodromy action \(\kappa^K_X \)

further input: \((F, m_F, \eta_F, \Delta_F, \varepsilon_F)\) algebra-coalgebra in \(C \boxtimes C^{rev} \)
input: bulk handle Hopf algebra \(K = \int_{X \in C \boxtimes C^\text{rev}} X \otimes X^\vee \)

input: partial monodromy action \(\kappa_X^K \)

further input: \((F, m_F, \eta_F, \Delta_F, \varepsilon_F)\) algebra - coalgebra

define family of morphisms \(\text{Cor}_{g;p,q} = \text{Cor}_{g;p,q}(F) : \)

\[
\begin{align*}
\text{Cor}_{0;1,1} & := \text{id}_F \\
\text{Cor}_{1;1,1} & := m_F \circ (\rho_F^K \otimes \text{id}_F) \circ (\text{id}_K \otimes \Delta_F)
\end{align*}
\]

\(\kappa_F^K \)

\(\Delta_F \)

\(m_F \)

\(F \)

\(\in \text{Hom}_{C \boxtimes C^\text{rev}} (K \otimes F, F) \)
input: bulk handle Hopf algebra \(K = \int_{X \in \mathcal{C}} \mathcal{C}^{rev} X \otimes X^\vee \)

input: partial monodromy action \(\kappa_X^K \)

further input: \((F, m_F, \eta_F, \Delta_F, \varepsilon_F)\) algebra-coalgebra

define family of morphisms \(\text{Cor}_{g;p,q} = \text{Cor}_{g;p,q}(F) \):

\[
\text{Cor}_{0;1,1} := \text{id}_F \\
\text{Cor}_{1;1,1} := m_F \circ (\rho^K_F \otimes \text{id}_F) \circ (\text{id}_K \otimes \Delta_F) \\
\text{Cor}_{g;1,1} := \text{Cor}_{1;1,1} \circ (\text{id}_K \otimes \text{Cor}_{g-1;1,1}) \quad \text{for} \quad g > 1
\]
Bulk correlation functions

input: bulk handle Hopf algebra

\[K = \int_{X \in \mathcal{C}} C_{\text{rev}} X \otimes X^\vee \]

input: partial monodromy action \(\kappa_X^K \)

further input: \((F, m_F, \eta_F, \Delta_F, \varepsilon_F)\) algebra - coalgebra

define family of morphisms \(\text{Cor}_{g;p,q} = \text{Cor}_{g;p,q}(F) \):

\[
\begin{align*}
\text{Cor}_{0;1,1} & := \text{id}_F \\
\text{Cor}_{1;1,1} & := m_F \circ (\rho^K_F \otimes \text{id}_F) \circ (\text{id}_K \otimes \Delta_F) \\
\text{Cor}_{g;1,1} & := \text{Cor}_{1;1,1} \circ (\text{id}_K \otimes \text{Cor}_{g-1;1,1}) \quad \text{for} \quad g > 1 \\
\text{Cor}_{g;p,q} & := \Delta_F^{(p)} \circ \text{Cor}_{g;1,1} \circ (\text{id}_K \otimes g \otimes m_F^{(q)})
\end{align*}
\]

\[\text{Cor}_{g;0,n} = \]

\[K K \ldots K \]

\[\eta_F \]

\[F F \ldots F \]

\[\Delta_F \]

\[m_F \]

\[\kappa^K_F \]
Bulk correlation functions

input: bulk handle Hopf algebra \(K = \int_{X \in C} C^{\text{rev}} X \otimes X^\vee \)

input: partial monodromy action \(\kappa^K_X \)

further input: \((F, m_F, \eta_F, \Delta_F, \varepsilon_F) \) algebra-coalgebra

define family of morphisms \(\text{Cor}_{g;p,q} = \text{Cor}_{g;p,q}(F) : \)

\[
\begin{align*}
\text{Cor}_{0;1,1} & := \text{id}_F \\
\text{Cor}_{1;1,1} & := m_F \circ (\rho^K_F \otimes \text{id}_F) \circ (\text{id}_K \otimes \Delta_F) \\
\text{Cor}_{g;1,1} & := \text{Cor}_{1;1,1} \circ (\text{id}_K \otimes \text{Cor}_{g-1;1,1}) \quad \text{for } g > 1 \\
\text{Cor}_{g;p,q} & := \Delta_F^{(p)} \circ \text{Cor}_{g;1,1} \circ (\text{id}_K \otimes g \otimes m^{(q)}_F) \\
\end{align*}
\]

goal: various desirable properties of \(\text{Cor}(F) \) from properties of \(F \)

\(\implies \) \(\text{Cor} \) candidate for bulk correlation functions of a full CFT
Properties of $\text{Cor}(F)$

- Action of mapping class group:
 - F Frobenius (and associative and coassociative)
 - \Rightarrow $\text{Cor}(F)$ invariant under fusing move
 - F commutative and cocommutative (and trivial twist)
 - \Rightarrow $\text{Cor}(F)$ invariant under braiding move
 - F \ldots\ldots \Rightarrow $\text{Cor}(F)$ also invariant under rotation move
Properties of \(\text{Cor}(F) \)

- **action of mapping class group:**
 - \(F \) Frobenius (and associative and coassociative)
 \[\implies \text{Cor}(F) \text{ invariant under fusing move} \]
 - \(F \) commutative and cocommutative (and trivial twist)
 \[\implies \text{Cor}(F) \text{ invariant under braiding move} \]
 - \(F \) \(\cdots \cdots \implies \text{Cor}(F) \) also invariant under rotation move

call \(F \) **\(S \)-invariant** iff \(\text{Cor}_{1;1,0} \circ S_K = \text{Cor}_{1;1,0} \)

- \(F \) \(S \)-invariant \[\implies \text{Cor}(F) \text{ invariant under } S \)-move \]
- \(F \) symmetric \[\implies \text{can exchange incoming and outgoing field insertions} \]
Properties of $\text{Cor}(F)$

- action of mapping class group:
 - F Frobenius (and associative and coassociative)
 \implies $\text{Cor}(F)$ invariant under \textit{fusing move}
 - F commutative and cocommutative (and trivial twist)
 \implies $\text{Cor}(F)$ invariant under \textit{braiding move}
 - F \ldots \ldots \implies $\text{Cor}(F)$ also invariant under \textit{rotation move}

- call F \textit{S-invariant} iff $\text{Cor}_{1;1,0} \circ S_K = \text{Cor}_{1;1,0}$

- F S-invariant \implies $\text{Cor}(F)$ invariant under \textit{S-move}

- F symmetric \implies can exchange incoming and outgoing field insertions

- Lego-Teichmüller game: systematic description of diffeomorphisms via connected simply connected CW complex with $F / B / R / S$ moves as 1-cells

\implies invariance of $\text{Cor}(F)$ under moves
implies invariance of $\text{Cor}(F)$ under whole mapping class group
Properties of $\text{Cor}(F)$

- action of mapping class group:
 - F Frobenius (and associative and coassociative)
 \implies $\text{Cor}(F)$ invariant under fusing move
 - F commutative and cocommutative (and trivial twist)
 \implies $\text{Cor}(F)$ invariant under braiding move
 - F symmetric \implies can exchange incoming and outgoing field insertions

- call F S-invariant iff $\text{Cor}_{1;1,0} \circ S_K = \text{Cor}_{1;1,0}$

- F S-invariant \implies $\text{Cor}(F)$ invariant under S-move

- F symmetric \implies can exchange incoming and outgoing field insertions

Status:
- general C: arguments straightforward but not written up
- $C = H$-mod: $F = \int^{U \in C} U \boxtimes \omega(U^\vee)$ is \cdots S-invariant Frobenius
Properties of $\text{Cor}(F)$

- Action of mapping class group:
 - F Frobenius (and associative and coassociative) $\implies \text{Cor}(F)$ invariant under fusing move
 - F commutative and cocommutative (and trivial twist) $\implies \text{Cor}(F)$ invariant under braiding move
 - F · · · · · · $\implies \text{Cor}(F)$ also invariant under rotation move

Call $F \underline{\text{S-invariant}}$ iff $\text{Cor}_{1;1,0} \circ S_K = \text{Cor}_{1;1,0}$

- F S-invariant $\implies \text{Cor}(F)$ invariant under S-move
- F symmetric \implies can exchange incoming and outgoing field insertions

Status:
- General C: arguments straightforward but not written up
- $C = H\text{-mod}$: $F = \int^U \in C U \boxtimes \omega(U^\vee)$ is · · · · S-invariant Frobenius
 and $\text{Cor}(F)$ is mapping class group invariant
 - by brute force: invariance under action of set of generators of $\text{Map}(\Sigma)$

$\text{F-SCHWEIGERT-STIGNER 2014}$
Properties of $\text{Cor}(F)$

- behavior under sewing $\Sigma \to \Sigma'$ of world sheets:
 - known: sewing/factorization relations among spaces of conformal blocks
 - desired: sewing relations map $\text{Cor}(\Sigma; F)$ to $\text{Cor}(\Sigma'; F')$
Properties of $\text{Cor}(F)$

- behavior under sewing $\Sigma \to \Sigma'$ of world sheets:
 - known: sewing/factorization relations among spaces of conformal blocks
 - desired: sewing relations map $\text{Cor}(\Sigma; F)$ to $\text{Cor}(\Sigma'; F)$

- two types of sewings:
 - non-handle creating:
 - result follows from simple form of sewing relations
 - e.g.
 \[
 \int_{X \in C \boxtimes C^{\text{rev}}} \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1, X) \otimes_k \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_2 \otimes X, Y) = \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1 + g_2, Y)
 \]
 with dinatural family $f \otimes g \mapsto g \circ (\text{id}_{K \otimes g_2} \otimes f)$
Properties of $\text{Cor}(F)$

- behavior under sewing $\Sigma \to \Sigma'$ of world sheets:
 - known: sewing/factorization relations among spaces of conformal blocks
 - desired: sewing relations map $\text{Cor}(\Sigma; F)$ to $\text{Cor}(\Sigma'; F')$

- two types of sewings:
 - non-handle creating:
 - result follows from simple form of sewing relations

 e.g.
 \[
 \int_{X \in C \boxtimes C^{\text{rev}}} \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1, X) \otimes_k \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_2 \otimes X, Y) = \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1 + g_2, Y)
 \]
 with dinatural family $f \otimes g \mapsto g \circ (\text{id}_{K \otimes g_2} \otimes f)$

 - handle creating:
 - must form coend in category of left exact functors
 - technically involved
Properties of $\text{Cor}(F')$

- behavior under sewing $\Sigma \to \Sigma'$ of world sheets:
 - known: sewing/factorization relations among spaces of conformal blocks
 - desired: sewing relations map $\text{Cor}(\Sigma; F')$ to $\text{Cor}(\Sigma'; F')$

- two types of sewings:
 - **non-handle creating:**
 - result follows from simple form of sewing relations
 - e.g. $\int_{X \in C \boxtimes C^{\text{rev}}} \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1, X) \otimes_k \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_2 \otimes X, Y) = \text{Hom}_{C \boxtimes C^{\text{rev}}}(K \otimes g_1 + g_2, Y)$ with dinatural family $f \otimes g \mapsto g \circ (\text{id}_{K \otimes g_2} \otimes f)$
 - **handle creating:**
 - must form coend in category of left exact functors

Outlook: to be written up quite soon
THANK YOU
Appendix: Generators of Map_Σ

Algebras in monoidal categories

- exact sequence $1 \to B_{g;n} \to \text{Map}_{g;n} \to \text{Map}_{g;0} \to 1$

thus generated by permutations of holes and Dehn twists

(relations not needed)
given a functor \(G : \mathcal{D}^{\text{op}} \times \mathcal{D} \to \mathcal{E} \) and an object \(B \in \mathcal{E} \)

a dinatural transformation \(G \Rightarrow B \) is a family of morphisms

\[
\varphi_X : G(X, X) \to B \quad \text{s.t.} \quad G(Y, X) \xrightarrow{G(\text{id}_Y, f)} G(Y, Y)
\]

\[
G(f, \text{id}_X) \downarrow \quad \varphi_Y \\
G(X, X) \quad \Downarrow \varphi_X \\
G(X, X) \quad \xrightarrow{\varphi_X} B
\]

commutes for all \(f : X \to Y \)

coend \((A, \iota)\) for \(G \):

initial object in category of dinatural transformations \(G \Rightarrow - : \)

\[
\text{notation:} \quad (A, \iota) = \int^X G(X, X)
\]

unique up to unique isomorphism (if exists)