Consider the orbit of a dominant weight of a simple Lie algebra under the action of its Weyl group. (Weyl) orbit functions have been defined as (alternating) sums over these orbits of the exponential function. As multivariate polynomials, they are generalizations of Chebyshev polynomials, and their remarkable features have been extensively studied over the past several years. They have both continuous and discrete orthogonality properties, obey striking cubature formulas, give rise to Fourier-like discrete transforms, and promise many useful applications. We discuss their properties, including new results on their discretized versions recently found by Hrivnak and the author, using the modular data of conformal field theory as a guide.