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1. ARITHMETIC INVARIANTS OF ELLIPTIC CURVES ON AVERAGE (1/2)
BY MANJUL BHARGAVA

Recall: Any elliptic curve E over Q can be expressed uniquely in the form

EA,B : y2 = x3 + Ax+B, A,B ∈ Z, and if p4 | A then p6 - B for all primes p.

Define the (naive) height
H(EA,B) := max{4|A|3, 27B2}.

Note: the discriminant ∆ of the elliptic curve EA,B is given by

∆ = −4A3 − 27B2.

Consider the number of curves EA,B of height at most X . This count is equal to

#{EA,B : H(EA,B) < X} = cX5/6 + o(X5/6).

If we order all EA,B/Q by height, we ask:

Q1: the average rank of EA,B?
• Conjecture 1: the average rank of EA,B ordered by height is equal to 1/2 (Goldfeld, Katz-

Sarnak ).
Q2: the average size of the n-Selmer group of EA,B?
• Conjecture 2: the average size of the n-Selmer group is equal to σ(n) (NEW).

Q3: the average size of the root number of EA,B?
• Conjecture 3: the average should be zero (equidistribution of root number).

Q4: the proportion of EA,B satisfying BSD?
• Conjecture 4: it should be 100%. In fact, BSD says all elliptic curves satisfy BSD.

Theorem 1.1. Conjectures 2 and 3 imply Conjecture 1 and the parity conjecture.

Proof. Exercise. �

Theorem 1.2. Conjecture 2 implies Conjecture 4.

The proof of Theorem 1.2 will be given in the Lectures 1 and 4.

Remark 1.3. Essentially nothing known previously on Q1 to Q4 beyond trivial bounds. There
were many conditional results under GRH, BSD, and other heuristics.

We begin with some latest progress made on Q2:

Theorem 1.4. (with Arul Shankar)

Avg(Seln(EA,B)) = σ(n) for n = 1, 2, 3, 4, 5.

Proof. (Outline)

(a) For each n, find a representation V of an algebraic group G, defined over Z, such that:
(i) the ring of invariants of G(C) on V (C) is freely generated by two elements, which we

call A,B.
(ii) there is an injective map

(∗) Seln(EA,B) ↪→ [G(Z)\V (Z)]A,B

For each n, we require a pair (G, V ).
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• For n = 2, we have (G, V ) = (PGL2, Sym4(2)) (Sym4(2) are binary quartic
forms). This was due to Birch and Swinnerton-Dyer .
• For n = 3, we have (G, V ) = (PGL3, Sym3(3)) (ternary cubic forms) due to

Cassels, Cremona-Fisher-Stoll , Aronholdt .
• For n = 4, we have (G, V ) = ((GL2×GL4)/ ∼, 2 ⊗ Sym2 4) (2 ⊗ Sym2 4) refer

to two quadrics in P3). This was due to Clebesch , Cremona-Fisher-Stoll .
• For n = 5, we have (G, V ) = ((GL5×GL5)/ ∼, 5⊗Λ25) (5× 5 skew-symmetric

matrices in linear forms in five variables). This was due to Cayley , Sylvester ,
Buchsbawn-Eisenbud .

Note: An n-Selmer element of EA,B can be viewed as a map C → Pn−1 such that
Jac(C) = EA,B and C is a genus one curve that has local points everywhere.
• When n = 2, 3, 4, it is easy to understand geometrically from this point of view.
• When n = 5, it is a genus one curve in P4, with five quadrics contain it. One cannot

take arbitrary quadrics, as they typically intersect trivially. Thus one needs to take
special consideration.

Remark 1.5. If we knew a similar way to understand the map C → Pn−1 for n > 5 (C is a genus
one curve) then could likely understand n-Selmer for n > 5 (algebraic geometry problems).

(b) Count G(Z)-orbits on V (Z) having bounded A and B (geometry of numbers).
(c) Elements in image of (∗) are defined by infinitely many congruence conditions. Sieve to these

elements using variant of Ekedahl sieve.
(d) Divide by cX5/6 gives σ(n).

�

Note: Avg(Sel5(EA,B)) = 6⇒ 5-Selmer rank of EA,B is 0 or 1 most of the time.
Open problems:

(0) Does p-Selmer rank zero imply analytic rank zero? We know that p-Selmer rank zero
implies rank zero (due to Kolyvagin) and also that analytic rank zero imply rank zero.

(1) Does p-Selmer rank 1 implies analytic rank 1, and analytic rank 1 implies rank 1 (Gross-
Zagier-Kolyvagin). But does p-Selmer rank imply rank 1?

(S) Special case: does Sel2(E) = Z/2Z (rational 2-torsion free) imply rank 1? It is unknown!
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2. IWASAWA THEORY AND RANKS OF ELLIPTIC CURVES AND SELMER GROUPS (1/2)
BY ERIC URBAN

Let E be an elliptic curve over Q. We consider the cases when p a is prime of good reduction,
ordinary good reduction, or multiplicative reduction.

Selp(Q, E) ⊂ H1(Q, Ep∞(Q)).

We have the exact sequence

0→ E(Q)⊗Qp/Zp → Selp(Q, E)→Xp(Q, E)→ 0.

(C0) If E has rank 0, then the corank p-Sel = 0 implies L(E, 1) 6= 0. The converse implication
is due to Gross-Zagier-Kolyvagin . (and Kato has a different method )

(C1) If E has rank 1: then the corank p-Sel = 1 implies L(E, s) = 1 for s = 1, due to Gross-
Zagier-Kolyvagin.

(0) For rank 0, use p ordinary prime and it follows from the Iwasawa Main Conjecture for
E (by Skinner-Urban). For p multiplicative reduction case, due to Skinner. For p super-
singular, follows from Bloch-Kato conjecture for E (Skinner-Urban).

(1) For rank 1, p ordinary done by Wei Zhang good ordinary real. Venerucci dealt with the
multiplicative reduction case. In these two approaches the Iwasawa Main Conjecture for E
is used.

2.1. Iwasawa theory, Iwasawa-Greenberg conjectures.
LetO/Zp be a finite extension, k its residue field, R be a local noetherian completeO-algebra with
residue field k.
We have a Galois representation ρ : GQ → GLN(R) such that:

(1) There exists Σ ⊂ Spec(R)(Qp) (Zariski dense) such that for every x ∈ Σ, ρx = GQ
evx−−→

GLN(R)→ GLN(Qp). ρx is motivic, p-ordinay,

ρk|Ip ∼

εmN (x) · · · ∗
... . . . ...
0 · · · εm1(x)

 .

For Fili(Vx) or Fili /Fili+1, the action given by εicyc.
(2) For all x ∈ Σ, ρx is critical in the sense of Deligne, i.e.

L(ρx, 0)

Ω∞(ρx)Ωp(ρx)
∈ Zp.

With the assumption: ρGQ = 0, we formulate the following conjectures:

Conjecture 2.1.

(1) There exists Lρ ∈ R such that for all x ∈ Σ, Lρ(x) =
L(ρx, 0)

Ω∞(ρx)Ωp(ρx)
(up to p-adic units).

(2) If Lρ 6= 0 then a certain Selmer group is co-torsion over R. First, one defines Sel(Q, ρx) ⊂
H1(Q, ρx ⊗ L/O), evx(R) ⊂ O ⊂ Zp, L = Frac(O). An element in Sel(Q, ρx) character-
izes an isomorphism class of extensions

0→ ρx ⊗ ω−mO/O → W → ω−nO/O → 0
5



such that for all ` 6= p, the restriction of I` is split plus ordinary reduction at p. W is free
of rank N + 1 over O/ωnO. W is ordinary if

ρW |Ip ∼



εmN (x) · · · · · · · · · · · · · · · · · · ∗
... . . . ... · · · · · · · · · · · · ...

0 · · · εms+1(x) · · · · · · · · · · · · ...
0 · · · 0 1

0 · · · 0 0 εms(x) · · · · · · ...

0 · · · 0 0
. . . · · · · · · ...

0 · · · 0
... 0

. . . · · · ∗
0 · · · 0 0 0 · · · · · · εm1(x)


,

where mN(x) ≥ · · · ≥ ms+1(x) > 0 ≥ ms(x) ≥ · · · ≥ m1(x).

Let F t
ρx ⊂ ρx the subspace generated by N − s first vectors of the basics, which implies

0→ ρx/F
t
ρx ⊗ ω

−nO/O → W/F T
ρx → ω−nO/O → 0,

which then implies

[w]|Ip ∈ ker(H1(Q, ρx ⊗ L/O)→ H1(Ip, ρx/ρ
tρx ⊗ L/O)).

2.2. Extra condition on ρ.
There exists F+ρ ⊂ Vρ = RN such that for all x ∈ Σ, (F+ρ)x = F+(ρx).

Remark 2.2.

(1) F+ρ depends on Σ and for a given ρ there exist possibly several sets Σ giving rise to
different elements F tρ.

(2) Different Σ’s give rise to different p-adic L-functions.

Selmer groups Selp, S a finite set of primes, p 6∈ S. (Upper star below denotes the pontryagin dual)

SelS(Q, p) = ker(H1(Q, ρ⊗R∗)→
⊕
l 6∈S
ρ 6=0

H1(Il, ρ⊗R∗)⊕H1(Ip, ρ/F
+ρ⊗R∗)).

Conjecture 2.3. (Iwasawa-Greenberg ): If Lρ 6= 0, thenXF+ρ(Q, ρ) =
(

Sel∅F tρ(Q, ρ)
)∗

is torsion
over R and FilHR(XF+ρ(Q, ρ)) = Lρ.

Example 2.4. Take ρ0 : GQ → GLN(O) attached to a motive, ordinary at p and critical. Γ =
Gal(Q∞/Q), Q∞/Q Zp-cyclotomic extension. ρ0 ⊗O[[Γ]]

For all ψ finite order, xψ : O[[Γ]] 7→ Zp, σ 7→ ψ(σ), ρx = ρ0 ⊗ ψ implies p-adic L-function

interpolating
L(ρ0 ⊗ ψ, 0)

periods
.

Special case: take ρ0 : GQ → GL(Tp(E)), E ordinary at p.

L(ρ0 ⊗ ψ, 0) = L(E,ψ, 1)
6



implies it is known that there exists p-adic L-function interpolating those values. Where the Main
Conjecture implies that Fil•H(Sel(Q, ρTp(E) ⊗ [·]))∗ ∼ (Lp(E, ·)).

Example 2.5. Rankin-Selberg conditions. Let f be an elliptic modular form of level N and weight
k, and g an elliptic modular form of level N and weight l, both ordinary at p.

Their Galois representations ρf is of Hodge-Tate weight (k − 1, 0), ρf |Ip ∼
(

1 ∗
0 ε−k

)
, and ρg is

of Hodge-Tate weight (l − 1, 0).
Define two Hida families F,G where F ∈ I[[q]], I/O[[w1]] G ∈ J[[q]], J/O[[w2]] and two big
representations

ρF : GQ → GL2(I),
ρG : GQ → GL2(J).

R = I⊗O J⊗O[[Γ]], where Γ = Gal(Q∞/Q) and such ρR-S = ρF ⊗ ρG ⊗ [·] ⊂ GL4(R). Critical
points inside Spec(R)(Qp) are given by (f, g, εnψ) = x.

(I) When k > l, ρf ⊗ ρg ⊗ εnψ critical if k − 1 ≥ m ≥ l.

(II) k < l, ρf ⊗ ρg ⊗ εnψ critical if l − 1 ≥ m ≥ k.

Then

(I) F+ρx = F+ρf ⊗ ρg

ρx|Ip ∼


εn

0 ε1−l+n

0 0 ε1−k+n

0 0 0 ε2−k−l+n


F+ρ = F+ρF ⊗ ρG

(II) F+ρx = F+ρg ⊗ ρf F+ρ = F+ρG ⊗ ρF .
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3. IWASAWA THEORY AND RANKS OF ELLIPTIC CURVES AND SELMER GROUPS (2/2)
BY ERIC URBAN

Recall we had two Hida families F,G with Galois deformation

ρ = ρF ⊗ ρG ⊗O[[Γ]]

and we had two types:

(I) Σ = {(f, g, εncycψ), k − 1 ≥ n ≥ l}, F+
ρ = F+

ρF
⊗ ρG ⊗ Λ.

(II) Σ = {(f, g, εncycψ), l − 1 ≥ n ≥ k}, F+
ρ = ρF ⊗ F+ρG ⊗ Λ.

Hida defined

LI(x) =
L(f × g,m)

Ωp(g)

LII(x) =
L(f, g,m)

〈g, g〉Ωp(g)
.

Special case: When g ∈ G is an CM form, K an imaginary quadratic field, p splits in K. Let
g → χ be a Hecke character of K of Hodge-Tate type (l − 1, 0), then

K ⊂ Q→ Qp → χp : GK → Qx

p .

Ip = Ip, χp|Ip = Frobinous character ×ε1−l
cyc , χcp|Ip is trivial.

ρg = Ind
GQ
GK

χp,

ρg|Ip =

1 · · · ∗
... . . . ...
0 · · · ε1−` × roots


then G is family of CM-forms, and thus we have two p-adic L-functions:

(I) For
∑

(f, χ, εnψ), when k − 1 ≥ n ≥ l we have LI.
(II) For

∑
(f, χ, εnψ), when l − 1 ≥ n ≥ k we have LII.

3.1. Selmer conditions.
I) F+ρ = F+ρF ⊗ Ind

GQ
GK

χρ, Sel(Q, ρx) ⊂ H1(Q, ρF ⊗ Ind
GQ
GK

χp) = H1(K, ρF ⊗ χp).

Sel(Q, lx) = {ker(H1(k, ρF ⊗ χp)→ H1(K, lF/F
+ρF ⊗ χp).

ΓK = Gal(K∞/K), maximal Zp extension of K, isomorphic to Γ+ × Γ−.

I) Sel(Q, ρF ⊗ ρG ⊗ Λ) = SelI(K∞, ρF ), usual Selmer condition for F .

II) F+ρx = ρF ⊗ F+ρg = ρF ⊗O, ρx/F+ρx = ρF ⊗ ε1−l,

ρg|Ip =

(
1 0
0 ε1−l

)
implies

SelII(ρx) = ker(H1(K, ρF ⊗ χp)→ H1(Kp, ρg ⊗ χp)

Theorem 3.1. (Skinner, Urban ) Iwasawa-Greenberg conjecture is true for SelI(K∞, ρF ).
8



Theorem 3.2. (X. Wan ) Iwasawa-Greenberg conjecture is true for SelII(K∞, ρF ).

The main idea in the proofs of these theorems is to study Eisenstein congruences.

Remark 3.3. f eigenfunction inside the Hida family F . The Iwasawa Main Conjecture implies
SelI(K∞, f)→ LI(K∞, f). Kato has a theorem implies that Sel(Q∞, f)→ Lp(f, s).

Lp(f, s)× Lp(f ⊗
(
·

K/Q

)
, s)→ Sel(F )⊕ Sel(F ⊗

(
·

K/Q

)
).

(I) One looks at Eisenstein series for U(2, 2), E(π, χ), its Galois representation is going to be of
the form σπ ⊕ χp ⊕ χ−cp det(σπ).

Remark 3.4. H1(K, ρ⊗ χ−1)

0→ ρ⊗O/ωn → W → O/ωn(χ)→ 0.

Ribet’s idea: Find a Galois representation r such that

(1) r is irreducible, r : GK → GLn+1(O) and
(2) r = (r (mod ω)) = ρ⊕ χ. Then construct a lattice L in r which is non-split.

0→ ρ⊗O/ωn → L/ωnL → O/ωn(χ)→ 0.

If moreover we know that r is ordinary, then rL (mod ωn) is ordinary as well. (r, V )
Fili V/Fili+1 action of Ip is given by εicyc.

Look for cusp forms E(π, χ) (mod ωn). Then

tr(ρσ) ≡ tr(ρH) + χ+ χ−c det(ρπ) (mod ωn).

the important point of the construction of the Eisenstein series is given byE(π, χ) (mod L(π⊗χ−1,0)
period )

looks like a cusp form.

Consequences:

(I) L(E, 1) = 0 implies Sel(Q, E) is of rank at least 1. Selmer rank equal zero implies
L(E, 1) 6= 0.

(II) LII(E/K, 1) = 0⇒ SelII(k,E) is of corank at least 1.

ker(H1(K,VpE/TpE)→ H1(Kp, VpE/TpE)),

H1
p (K,VpE) : = ker(H1(K,VpE)→ H1(Kp, VpE))

H1
F (K,VpE) : = ker(H1(K,VpE)→ H1

F (Kp, VpE))⊕H1
f (Kpc , VpE)

Lemma 3.5. (Skinner) if H1
f (K,Vp(E)) → H1

f (Kp, Vp(E)) and the rank of H1
f (K,Vp(E)) = 1,

then
H1

p (K,Vp(E)) = 0.

Theorem 3.6. (Skinner) Assume H1
f (K,Vp(E)) → H1

f (Kp, Vp(E)) and rank H1
f (K,Vp(E)) = 1,

then the analytic rank is 1.

9



4. ARITHMETIC INVARIANTS OF ELLIPTIC CURVES ON AVERAGE (2/2)
BY MANJUL BHARGAVA

Recall from Lecture 1:
Seln(EA,B) ↪→ [G(Z)\V (Z)]A,B .

How to count elements in the right hand side such that H(A,B) = max{4|A|3, 27B2} < X when
proving Theorem 1.4

(ii) Construct fundamental domains for G(Z) on V (R).
(i) Construct a fundamental domain L for G(R) on [V (R)]H=1 such that L is bounded in

V (R).
(ii) Construct a fundamental domain F for G(Z) on G(R) that is contained in a ‘Siegel

set’. That is, F = N ′A′K (the Iwasawa decomposition) where N ′ is a bounded set
of lower triangular matrices, A′ is a set of diagonal matrices, and K is a compact
subgroup.

Example: If G = SL2, then

N ′(t) =

{(
1 0
n(t) 1

)
: |n(t)| ≤ 1/2

}
,

A′(t) =

{(
t−1 0
0 t

)
: t ≥ 31/4/21/2

}
K(t) = SO2 .

Then for any g ∈ G(R), λFgL is a fundamental domain for G(Z) on [V (R)]H=1.

Proof. By symbolic manipulation.

[G(Z)\G(R)]× [G(R)\V (R)] = G(Z)\V (R).

�

(iii) How to count points in ΛFgL of bounded height? (Here Λ = {λ : λ > 0}.)

4.1. Averaging method.
Choose g ∈ G0 where G0 is compact in G(R). Let N(V ;X) = # of generic (corresponding to
n-Selmer elements of order n) G(Z)-orbits on V (Z) of height less than X:

• for binary quartic forms “generic” means no rational root,
• for ternary cubic forms “generic” means no rational flex.

We write

N(V ;X) =

∫
g∈G0

#{v ∈ ΛFgL ∩ V (Z)gen : H(v) < X}dg∫
g∈G0

dg
.

By switching order of integration, we have

N(V ;X) =

∫
g∈FΛ

#{v ∈ gG0L ∩ V (Z)gen : H(v) < X}dg∫
g∈G0

dg
.
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Partition F into “cusp part” and “main body” based on A′. Most lattice points in the cusp are not
generic. On the contrary, most points in the main body are generic. After making this observation
rigorous, we see that∫

g∈FΛ
#{v ∈ gG0L ∩ V (Z)gen : H(v) < X}dg∫

g∈G0
dg

= Vol({ΛFgL : H < X}) + o(X5/6).

Remark 4.1. Order 2 elements in 2-Sel are non-generic.

Remark 4.2. “If your analytic approach is not working, there must be an algebraic reason and
you should look for it and then take it out by hand.” - Manjul Bhargava, Nov. 2014.

Lemma 4.3. Suppose that f is continuous on V . Then∫
v∈V

f(v)dv = |J |
∫
g∈G

∫
w∈L

∫
λ>0

f(gwλ)dAdBdgd×λ.

Avg(# of n-Selmer elements of order n) =∫
A,B

H(A,B)<X

Vol(G(Z)\G(R))

#EA,B
nEA,B(R)

#EA,B(R)[n]
dAdB

×
∏
p

|J |p
∫
A,B

Vol(G(Zp)) ·
#EA,B(Qp)/nEA,B(Qp)

EA,B(Qp)[n]
dAdB.

Many things cancel, so the final answer is

Vol(G(Z)\G(R)) ·
∏
p

Vol(G(Zp)) = τ(G) = n (Poonen: the adelic volume).

Thus,
Avg(# Seln(EA,B)) = σ(n).

Corollary 4.4. Avg Rank(EA,B) ≤ 1.05.

Proof. Avg(20r − 15) ≤ Avg(5r) ≤ 6, so Avg(r) ≤ 21/20 = 1.05. Equality happens if and only
if 95% have rank 1 and 5% have rank 2. �

Theorem 4.5. (Arul’s lecture) There exists a family of congruences of 55% of all EA,B where root
number is equidistributed.

If we add Dokchitser’s theorem, then we have lots of curves have even 5-Selmer rank and also
lots of curves have odd 5-Selmer rank. This improves the upper bound to 0.885 (it comes from
0.55× 0.75 + 0.45× 1.05).

Theorem 4.6. (with C. Skinner and W. Zhang )

We have the following statistics for elliptic curves EA,B ordered by height.

• At least 16.5% of EA,B have rank and analytic rank 0,
• at least 20.6% of EA,B have rank and analytic rank 1, and most significantly
? at least 66.48% of EA,B satisfy BSD.
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5. ASYMPTOTICS AND AVERAGES FOR FAMILIES OF ELLIPTIC CURVES WITH MARKED
POINTS BY WEI HO

In Lecture 4, Bhargava discussed a family of elliptic curves given by an equation of the form

y2 = x3 + Ax+B = x3 + a4x+ a6, where a4, a6 ∈ Z, and ∆ 6= 0.

Further, We require a minimality condition, so that there is no prime p for which both p4|a4 and
p6|a6. We denote this family by F0. Recall the naive height H(A,B) := max{4|A|3, 27B2} and
the theorem of Bhargava-Shankar:

Theorem 5.1. (Bhargava-Shankar)

The average size of Seln for elliptic curves in F0 is σ(n) for n = 2, 3, 4, 5 when ordered by height.

We have other families. Namely:

• F1 : y2 + a3y = x3 + a2x
2 + a4x, with one marked point.

• F2 : y2 + a2xy + a6y = (x − a4)(x − a′4)(x − a′′4), a4 + a′4 + a′′4 = 0, with two marked
points.
• F0(2) : y2 = x3 + a2x

2 + a4x, with a 2-torsion point (over Q)
• F0(3) : y2 + a1xy + a3y = x3, with a 3-torsion point (over Q).
• FQ(

√
d)

1 , F1∈Q(
√
d), p+ p 6= 0.

5.1. Selmer results.
For each pair (F , p), we can compute Avg Selp over that family. We have the following results

• Avg Sel2(F0) = 3,Avg Sel3(F0) = 4,Avg Sel4(F0) = 7,Avg Sel5(F0) = 6.
• (F1, 2, 6), (F1, 3, 12).
• (F2, 2, 12)
• (F0(2), 3, 4).
• Avg Sel2(F0(3)) = 3,
• Avg Sel3(FQ(

√
d)

1 ) = 4.

Remark 5.2.

• Matches heuristics.
• Points are independent.

Proof.

(1) Given G an algebraic group, V a representation of G, we want a correspondence between

V (Q)/G(Q), a coarse moduli space,↔ {∈ F , C an E-torsor, L degree n line bundle on C.

Remark 5.3.

• V//G ∼= moduli space for whatever family (affine space for these families).
• V//G′ corresponds to a weighted projective space.
• Stabilizers correspond to automorphism groups.

(2) Find integral representatives (for locally soluble orbits). Take orbit in V (Q)/G(Q) with integer
invariants. We want an element of V (Z) with those invariants.

12



Remark 5.4. Can get stuck here.

(3) Find fundamental domains. This is typically easy.

(4) “generic” or “irreducible” elements. Typically the non-generic points lie in the cusp.

(5) Count generic or irreducible orbits using geometry of numbers.

(6) Apply a sieve (more complicated, especially with p = 2). �

5.2. Corollaries and non-corollaries.

Example 5.5. In F1, there is a positive proportion of elliptic curves with rank 1 or 2.

Why not just rank 1? Because we cannot easily find a sub-family with equidistributed root number.
If we somehow have a positive portion of rank 1’s, we would like to know whether we have a
positive portion of curves with rank equalling analytic rank. This cannot be done for rank 2, as the
current techniques seem to get stuck at rank 1.

Example 5.6. In F0(3)m p-adic methods are bad for p = 2.

Example 5.7. In F0(2), there is a positive proportion having rank 0 or 1.

Theorem 5.8. (Skinner-Urban) Let E/Q be an elliptic curve with good reduction. Then subject to
some p-adic conditions, we have

Selp(E) = 0⇒ rank = analytic rank = 0.

Theorem 5.9. (Skinner-Wan, Bertolini-Darmon-Prasanna ) E/Q good (ordinary) reduction, and
subject to some p-adic conditions, we have

Selp(E) ∼= Z/pZ⇒ rank = analytic rank = 1.

In F0(2), one can prove that a proportion of at least 5/8 of curves have Sel3 rank equalling 0 or
1. Note that we get good reduction 4/9’s of the time (∆ = 16a2

4(−4a4 + a2
2)) and equidistribu-

tion (Selp(E) → E(Qp)/pE(Qp), we obtain that at least 13.89% of F0(2) satisfy conditions of
Theorems 5.8 and 5.9.

13



6. EXPERIMENTS WITH ARAKELOV CLASS GROUPS AND RANKS OF ELLIPTIC CURVES
BY JOHN VOIGHT

The basic theme of this Lecture is: how do archimedean considerations come into into play into
heuristics for class groups and ranks of elliptic curves?

6.1. Basic Cohen-Lenstra heuristics.
Recall the Cohen-Lenstra heuristics predict the probability that the class group Cl(D) of an imagi-
nary quadratic field of (fundamental) discriminant D < 0 has a given p-Sylow subgroup for p odd.
To each abelian p-group G, we assign the weight

w(G) :=
1

# Aut(G)
.

This weight is natural comes from many sources:

• if G is an abelian group of order n and X is a set with #X = n, then the number of group
structures on X is isomorphic to G is n!/# Aut(G) = n!w(G).
• with w(G) = 1/# Aut(G), summing over abelian p-groups (Hall) , we obtain∑

G

w(G) =
∞∏
n=1

(1− p−n)−1 = η(p),

and Cohen-Lenstra then predicted that

lim
X→∞

#{0 < −D < X : Cl(D)[p∞] ∼= G}
#{0 < −D < X}

= w(G)
1

η(p)
.

Hence, for example, Cl(D)[3∞] ∼= Z/9Z occurs eight times more frequently than Cl(D)[3∞] ∼=
Z/3Z ⊕ Z/3Z. As a consequence, the average size of Cl(D)[p] is 2 for all p; equivalently, on
average Cl(D) has 1 element of order (exactly) p.

6.2. Cohen-Lenstra computations.
To test these heuristics, we sampled 10, 000 fundamental discriminants D with 0 < −D < 1010 at
random, , and found that the average number of elements of order p is:

Avg(3) = 0.97, Avg(5) = 1.03, Avg(7) = 1.02, Avg(11) = 0.97.

It is harder to confirm that Cl(D)[3∞] ∼= Z/9Z occurs eight times more frequently than Cl(D)[3∞] ∼=
(Z/3Z)2: in a sample of 100, 000 discriminants, we find the ratio

281

27
∼ 10.

6.3. Cohen-Lenstra for real quadratic fields.
The situation for real quadratic fields is slightly more complicated. Intuitively, the class group of
a real quadratic field is smaller than that of an imaginary quadratic field due to the presence of the
fundamental unit, and this unit gives an extra relation: so we should “modulo out by a random
element”: Specifically, first pick a random finite abelian p-group G with weight w(G), and then
modulo out by a random element. (If G is cyclic, one often gets a trivial group).

14



Remark 6.1. This prediction seems to give the right answer. It is made plausible by thinking
about the function field analogue, specifically hyper elliptic curves: a “real” hyper elliptic curve
(y2 = f(x) with f(x) of odd degree) has a unique point at infinity, so the class group of the affine
coordinate ring is the quotient of the Jacobian by a “random” point. Or, think in terms of lattices
and Arakelov class groups.

6.4. Cohen-Lenstra heuristics via lattices.
Another natural way to produce the Cohen-Lenstra weighting is by considering random lattices. If
G is a finite abelian group, then the number of lattices L ⊂ Zn such that Zn/L ∼= G is asymptotic
to (#G)n/# Aut(G) as n→∞.

This observation extends quite a bit.

Friedman-Washington showed that if M ∈ Mn(Z) is a random matrix with i.i.d. entries chosen
according to Haar measure, then the cockerel distribution of M converges to the Cohen-Lenstra
measure as n→∞.

More generally, one can show that ifM ∈Mn(Z/NZ) is a random matrix with iid entries, then the
cockerel distribution of M converges to the Cohen-Lenstra measure for all finite Z/NZ modules
G.

6.5. Class groups as cockerels.
It is plausible to model the class group of a number field K by such cockerels for the following
reason.

The class group Cl(K) is the quotient of the group of fractional ideals modulo principal ideals.

Let S be a factor base consisting of all prime ideals p satisfying Np ≤ B for some smooth-
ness bound B. Every α ∈ ZK whose norm factors into primes in S gives a relation. If L is the
lattice spanned by the set of relations, and B is big enough (B ≥ 6 log2 |dK | suffices on the GRH),
then

Cl(K) ∼= Z#S/L.

6.6. Archimedean normalization for Cohen-Lenstra.
If we model Cl(D) for D < 0 as the cockerel of a random matrix M ∈ Mn(Z) with iid entries in
[−X,X], then we expect that

# Cl(D) = detM ∼ n!Xn

(In this Lecture, we do not make the ∼ rigorous). But by the Brauer-Siegel theorem, we have

# Cl(D) ∼
√
|D|.

(This estimate is pretty good on average.) Therefore

n!Xn ∼
√
|D|.

15



As X,n → ∞, this model the usual Cohen-Lenstra heuristics for the distribution of the p-Sylow
subgroups.

6.7. Arakelov class groups.
Returning to the real quadratic case, we now keep track of units as well.

Let K be a number field. The Arakelov divisor group of K is

Div(K) =
⊕
p<∞

Z⊕
⊕
σ|∞

R.

This gives a group analogous to the case where K is the function field of a curve X over Fq.

A principal Arakelov divisor is a divisor of the form

(f) =
∑
p

ordp(f)[p] +
∑
σ

(− log |σ(f)|)[σ] ∈ P (K)

for f ∈ K×. We define the degree map

deg : Div(K)→ R

deg(p) = logNp

deg[σ] = 1 or 2 according if σ is real or complex.

The product formula implies that deg(f) = 0 for (f) ∈ P (K).

Let Div0(K) = ker deg and Pic0(K) = Div0(K)/P (K). Then we have an exact sequence

0→ T 0(K)→ Pic0(K)→ Cl(K)→ 0

where T 0 is the compact topological group

T 0 ∼=

(∏
σ

R

)0

/ log |Z×K |.

Now suppose K = Q(
√
D) is real quadratic. Then log |Z×K |) = (log |ε|)Z with ε ∈ Z×K , so

T 0(K) ∼= R/(log |ε|)Z

is a circle group, and we have

0→ R/(log |ε|)Z→ Pic0(K)→ Cl(K)→ 0

The size of Pic0(K) is ∣∣Pic0(K)
∣∣ = # Cl(K) log |ε| = hR = L(1, χ)

√
D

2
.

Typically, we expect L(1, χ) = O(Dε) for all ε > 0, so∣∣Pic0(K)
∣∣ ∼ √D/2.
16



6.8. Cohen-Lenstra heuristics, redux.
By analogy with the imaginary quadratic case, we model the Arakelov class group of a real qua-
dratic field K =

√
D as a random homomorphism

Zn → (Zn−1 × R2)0 ∼= Zn−1 × R,

represented by a matrix M whose entries lie in [−X,X](∩Z) and subject to the normalization

(detM ∼)n!Xn ∼
√
D.

The map Pic0(K)→ Cl(K) is modelled by forgetting the last column of M (having real entries);
in this way, we recover the Cohen-Lenstra model of “modelling out by an random element”.

We expect to get the same answer if we instead model with a matrix with all integer entries.

6.9. Arakelov class groups: computations. We consider random maps Zn = Z4 → Z3 × R
represented by matrices M whose entries lie in [−X,X] = [−13, 13]. In 100, 000 trials, we find
that the average determinant of such a matrix is about 12, 000, so

√
D/2 ∈ [0, 24, 000]. Therefore,

this should model the Arakelov class group for discriminants D ∼ 48, 0002. We consider 10, 000
random such discriminants.

The average number of elements of order 3 in Cl(D) is 1/3 (Davenport-Heilbronn ). The model
gives 1.32, and the actual count is 1.30.

The average regulator: our model gives 7700, the actual count is 8500.

For instead n = 8 and X = 3, we have det ∼ 160, 000 and regulator: Model gives 95, 000
and the actual count is 94, 000.

6.10. Unit signatures.
But wait! Returning to a general number field K, we an only recover f ∈ K× from its divisor (f)
up to a root of unity. (Joint work with Dummit ).

Suppose that K is totally real. We define the signature map by

sgn : K× → {±1}n ∼= (Z/2Z)n

f 7→ (sgn(σ(f))σ|∞.

We define the narrow Arakelov class group Pic+0(K) in the obvious way; we obtain

0→ T 0(K)→ Pic+0(K)→ Cl+(K)→ 0

where Cl+(K) is the narrow class group of K so that

0→ Z×K,+/Z
×2
K → Cl+(K)→ Cl(K)→ 0.
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6.11. Signature rank.
We define the signature rank sigrk(Z×K) of K to be the rank of the signature map restricted to Z×K .

We have sigrk(Z×K) ≥ 1 since −1 ∈ Z×K , and sigrk(Z×K) = 1 if and only if K possesses a
fundamental system of units that are totally positive.

So we are led to ask: what is the distribution of signature ranks over totally real fields of a fixed
degree d?

6.12. Armitage-Frohlich (AF).
Before modelling the narrow Arakelov class group, there is one important restriction: by the theo-
rem of Armitage-Frohlich , we have⌈

[K : Q]

2

⌉
− rk2 Cl(K)[2] ≤ sigrk(Z×K).

This theorem arises from the existence of the canonical Kummer (norm residue) pairing; in the
function field case, it is the Tate pairing.

The pairing is canonical, so we do not model it separately; instead, it implies an extra compat-
ibility and we just require that condition (AF) is satisfied fro each narrow Arakelov class group.

6.13. Heuristics for signature ranks.
Therefore, we model the narrow Arakelov class group of a totally real field of degree d > 2 as a
random map

Zn → Zn−(d−1) × Rd−1 × (Z/2Z)d

represented by a matrix M whose first n rows belong to [−X,X](∩Z) satisfying the following
conditions:

(N) The vector (0, 0, 1) is in the image of M .
(AF) Let MZ be the matrix keeping only the Z-columns, so cocker MZ models Cl(K). Let
s(kerMZ) ≤ (Z/2Z)d be the signed components (modelling the image of sgn(Z×K)). Then

dd/2e − rank2 cokerMZ ≤ rank2 s(kerMZ).

6.14. Computations.
To test this conjecture, we consider totally real cubic fields K (computed by Michael Novick). To
simplify, we consider a conditional probability, and we restrict to fields with odd class number
# Cl(K): vanilla Cohen-Lenstra predicts that this should happen for a large constant proportion
of fields. for the 65 million cubic fields with discriminant dK ≤ 109, approximately 83% had odd
class number.

The Armitage-Frohlich (AF) condition then implies that sigrk(Z×K) 6= 1 (there cannot be a to-
tally positive system of fundamental units) and we can ask about the distribution of signature ranks
2, 3.

Our heuristic implies that rank 2 should occur with probability 3/5 and rank 3 should occur with
18



probability 2/5. Of the 54 million cubic fields, we find percentages 58.6% and 41.4%. Also see the
work of Bhargava.

6.15. Ranks of elliptic curves: basic heuristic.
The archimedean normalization of Cohen-Lenstra heuristics is a warm-up for our (PPVW) heuris-
tics for elliptic curves.

See Bjorn Poonen’s Lecture 20 for a heuristic for the rank of a random elliptic curve

E : y2 = x3 + Ax+B over Q of height H = max(4|A|3, 27B2).

In brief: we take n of moderate size with random parity; we choose X such that n!Xn ∼ H1/2

and we compute the rank of the kernel of a random n× n alternating M ∈ Mn(Z) with entries in
[−X,X].

In the end, we predict that for each r ≥ 1, the probability that E of height H has rank ≥ r is
approximately 1/H(r−1)/24.

The setup above says how we should model the class group and regulator together. Arguing by
analogy, this gives a second way to arrive at our calibration, modelling the Shafarevich-Tate group
and the elliptic regulator together.

6.16. A few computations.
Bektemirov-Mazur-Stein-Watkins discuss the tension between data and conjecture for ranks of el-
liptic curves in some detail.

We consider instead some statistical sampling as follows. we take elliptic curves of height H ∈
[X,X +X/100] and compute their analytic ranks.

≈ X rank 0 rank 1 rank ≥ 2 rank ≥ 3
108 32% 48% 18% 2%
1010 33% 48% 17% 2%
1012 33% 48% 16% 2%

For what it’s worth, 1/2 · 10−10/24 = 19% and 1/2 · 10−20/24 = 7%.

The evidence is weak, but at least the percentage of rank at least 2 appears to be going down. Fur-
ther computations are in progress, using a conditional method to bound analytic ranks by Bober
(going back to work of Mestre and Fermigier ).

6.17. Final words.
In this Lecture, we have tried to convince you that it is a reasonable philosophy for arithmetic
objects to be modelled by kernels and cockerels of integer matrices whose size is normalized by
archimedean (L-function) considerations.

For more on heuristics for elliptic curves, see Lecture 20!
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7. COUNTING SIMPLE KNOTS VIA ARITHMETIC INVARIANT THEORY
BY ALISON MILLER

Recall: 1-knots are embeddings of the circle S1 in S3 which are equivalent up to some topological
equivalence, whose precise form is not of relevance. We formulate the definition of an n-knot as
follows:

Definition 7.1. An n-knot K ⊂ Sn+2 is an embedded submanifold, with K homeomorphic to Sn.
Similarly, this is up to topological equivalence.

Knot theory studies:

• when are two knots equivalent
• what invariants can be used to tell knots apart?

Given an n-knot K ⊂ Sn+2, one obtains the knot complement Sn+2 \ K. It turns out in most
situations the knot complement contains all (or most) of the information about the knot. General n-
knots are too complicated, as to understand them is equivalent to understanding finitely generated
groups. It will therefore be prudent to study the family of simple knots.

7.1. Simple (2q − 1)-knots.

Definition 7.2. A (2q − 1)-knot K is simple if

πi(S2q+1 \K) = πi(S1)

for i ≤ q, where πi is the ith homotopy group, with π1 being the fundamental group.

7.2. Arithmetic invariants.
Fox and Smythe constructed a knot invariant that is an ideal class . This comes from the Alexander
module for classical knots. In the case of 3-knot K, the knot complement can be covered by an
abelian cover C∞ leading to the covering group Z. The orientation of the knot gives us a canonical
generator for the group, which we denote by t. The Alexander module of K is then defined by
H1(C∞,Z). The infinite cyclic group 〈t〉 acts on AlexK and so AlexK is a Z[t, t−1] module. AlexK
has the following properties:

• AlexK is annihilated by the Alexander polynomial ∆(t) 6= 0.
• ∆(1) = 1,∆(t−1) = t−2 deg ∆∆(t). If deg ∆ = 2 then ∆ = mt2 + (1− 2m)t+m for some

positive integer m.
• AlexK is a module over the quotient ring

O∆ = Z[t, t−1]/∆(t).

• O∆ ⊗Z Q is a finite dimensional Q-algebra.
• If ∆ = mt2 + (1− 2m)t+m, then O∆ = Z[t, t−1]/(mt2 + (1− 2m)t+m).
• AlexK has the property that when ∆ is square-free, AlexK is isomorphic as anO∆-module

to an ideal of O∆. This gives rise to an arithmetic invariant.
• AlexK satisfies “Blanchfiled duality” and comes with a natural hermitian pairing over
Z[t, t−1].
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7.3. Motivating questions.

• Does this arithmetic invariant fit into the context of arithmetic invariant theory?
• If so, can we count them?

7.4. Alexander module of a simple (2q − 1)-knot.
Consider a simple (2q− 1)-knot K, with an infinite cover C∞ for the knot complement S2q+1 \K
generated by t. Then have (in terms of the homology groups)

Hq(C∞,Z) = AlexK ,

this is a Z[t, t−1]-module annihilated by some polynomial ∆(t), and call ∆(t) the Alexander poly-
nomial of K.

Theorem 7.3. (Bayer-Michel, Levine) There are only finitely many simple (2q − 1)-knots with a
given Alexander polynomial, provided that the polynomial is square-free.

Theorem 7.4. (Kearton, Trotter) For q > 1 odd, simple knots are entirely classified by the Alexan-
der modules along with the Blanchfield duality pairing on the Alexander modules.

Theorem 7.5. (Kearton, Levine, Trotter) Algebraic condition for which modules and pairing are
realizable.

The three theorems above enable us to “count” simple knots of square-free Alexander polynomials
of a fixed degree with bounded height.

7.5. Seifert hypersurfaces for knots.

Definition 7.6. A Seifert hypersurface for a 1-knot is a surface embedded in S3 with ∂V = K.
This generalizes to simple n-knots.

Theorem 7.7. Any simple n-knot can be written as ∂V where V is a Seifert hypersurface which is
a 2q-dimensional manifold with boundary and V is (q − 1)-connected.

This theorem is basically saying that “all topology of V comes fromHq(V ), the homology groups”
and thus Seifert hypersurfaces are classified by

rk(Hq(V,Z)) = 2g,

where g is the genus along with a non-symmetric Z-valued pairing on Hq(V,Z). The skew sym-
metric part is the intersection pairing which is a perfect pairing.

Simple Seifert hypersurfaces are in one-to-one correspondence with GLn-equivalence class of ma-
trices P such that det(P − P T ) = 1 (i.e. (M,P ) 7→ MPMT ). We can always change basis such
that

P − P T = J =

(
0 −Ig
Ig 0

)
.

This gives us the Sp2g-equivalence classes of matrices P with P − P T = J , and another change
of variables gives P 7→ P + P T = Q, which leads to the Sp2g-equivalence classes of matrices
Q ∈ Sym2(2g) such that Q ≡ J (mod 2).
The underlying representation is

Sym2(2g)→ adjoint representations of Sp2g,
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with free ring of invariants generated by coefficients of

det(J−1P − tI2g) = det(tJ − P ).

The latter polynomial is equal to the Alexander polynomial after a change of variables.
Simple Seifert hyper surfaces → Sp2g-orbits on Sym2(2g) (+ parity) → C self balanced ideal
classes of Rf = Z[y]/f(y)→ characteristic polynomial = f .

Simple (2q − 1)-knots (square-free ∆) → Alexander module + pairing → CSB ideal classes of
O∆ (finite-to-one) Alexander polynomials ∆(f) which leads to characteristic polynomial = f .

When ∆(t) = mt2 + (1 − 2m)t + m we have Sp2 = SL2 (hypersurfaces) orbits on binary
squarefree’s of discriminant dividing 4m. Knots correspond to binary quartic forms of discrim-
inant 1− 4m over Z[1/m].
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8. ARITHMETIC STATISTICS OVER GLOBAL FIELDS
BY JERRY XIAOHENG WANG

Let K denote a global field, which is either a number field or a function field of characteristic
zero over a smooth projective variety. Let M∞ denote the set of infinite places, or a finite non-
empty set of closed points on C in the function field case. O denote its ring of integers and
K∞ :=

∏
v∈M∞ Kv.

Remark 8.1. Philosophy: Q should correspond to K, Qp should correspond to Kp, and Zp should
correspond to Op, but Z does NOT correspond to O in most cases.

The first example is Sel2(E).

Step 0 Height of E/K

E : y2 = x3 + Ax + B,A,B ∈ K. (A,B) ∈ P(4, 6)(K) = Gm(K)\A2(K). For
(A,B) ∈ S(K), let I = {α ∈ K|α(A,B) ∈ S(O)}.

H(A,B) = NI
∏

v∈M∞ max(|A|1/4v , |B|1/6v ) when |M∞| > 1, the set S(K∞)<X is not
bounded. What is Avg Seln(E)?

Step 1 Orbit parametrization

Sel2(E/K) correspond to locally soluble orbits for the action of G(K) on V (K).
Step 2 Locally soluble orbits→ integral orbits (not true, but close).

Lemma 8.2. If v ∈ V (Kp)
sol has invariants in Op, then there exists gp ∈ G(Kp) such that

gpv ∈ V (Op).

Suppose v ∈ V (K)loc sol with invariants in O. Then there exists gp ∈ G(Kp such that
gpv ∈ V (Op).

(gp) ∈ G(Af ) =
⋃

β∈Cl(G)

( ∏
p6∈M∞

G(Op)

)
βG(K),

where Cl(G) is the class group of G which is finite. (gp)p = (g′p) · β · h⇒ βhv ∈ V (p) for

all p 6∈M∞. hv ∈ Vβ = V (K) ∩ β−1
(∏

p6∈M∞ V (Op)
)

, with V (O) = Vβ=1.

Gβ = G(K) ∩ β−1
(∏

p6∈M∞ G(Op)
)
β.

Proposition 8.3. Suppose v ∈ V (K)loc sol has invariants in O, then there exist β ∈ Cl(G)
such that

G(K)v ∩ Vβ 6=
For any subgroup G0 ≤ G(K) and any subset V0 ⊂ V (K), any real number X , let

N(V0, G0, X) =

#

{
irreducible G0-orbit in V0 of height < X where an orbit G0v is weighted by

1

# StabG0(v)

}
.
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If m : V (K)→ [0, 1] is G0-invariant, defined by congruence conditions, then

Nm(V0, G0, X) =

#

{
irreducible G0-orbit in V0 of height < X where an orbit G0v is weighted by

m(v)

# StabG0(v)

}
.

Theorem 8.4.

N(V (K)loc sol, G(K), X) =
∑
β

Nm(Vβ, Gβ, X)

where

m(v) = χV (K)loc sol(v)
1

# StabG(K)(v)

∑
β

∑
Vβ∈Gβ\Vβ∩G(K)v

1

# StabGβ(vβ)

−1

is defined by congruence conditions
∏

p6∈M∞

mp ·
∏
v∈M∞

mv.

Step 3 Count integral orbits soluble at∞.

L(X) = G(K∞)\V (K∞)<X scaled from L(1).

Fβ = Gβ\G(K∞).

Fβ · L(X)→ Gβ\V (K∞)<X where the fibre above v has size
# StabG(K∞)(v)

# StabGβ(v)
.

We want

Nm(Vβ, Gβ, X) ∼
∫
Fβ ·L(X)

m∞(v)

# StabG(K∞)(v)
dν∞,β(v)

where ν∞,β is normalized such that ν∞,β(Vβ\V (K∞)) = 1.

Problem 8.5.
(1) Davenport’s lemma over function field . “B ⊂ V (K∞) compact, t ∈ K∞, #tB∩Vβ =

V∞,β(tB) as |t| =
∏
v∈M∞

|tv|v →∞.”

This is proved via Poisson summation.

(2) Fβ is generally not compact, and so we need to do cusp analysis. Without loss of
generality we set Vβ = V (0), Gβ = G(0), G semi-simple.

(i) Reduction theory, G(0)\G(K∞) ⊂ N(K∞)A(K∞)K ′ (Springer).
A maximal split torus in P , N unipotent radical of P , K ′ compact subgroup of G(K∞),
and ∆ is a basis of positive roots.

ForG = PGL2, we haveA =

{(
t−1

t

)}
,N =

{(
1 0
∗ 1

)}
and ∆ = {α}, α

(
t−1

t

)
=

t2.
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(ii) Cut off the cusp. Restrict V to A where V =
⊕
χ∈U0

χ. For example

Sym4(2) = χx4 ⊕ χx3y ⊕ χx2y2 ⊕ χxy3 ⊕ χy4
For v ∈ V , χ ∈ U0, v(χ) is a χ-isotypic composition.

For U ⊂ U0, say v ∈ V (K) is U -irreducible if there exists g ∈ G(K) such that

gv(χ) = 0,∀χ ∈ U
Let U1, · · · , Um ⊂ U0 such that if v is Ui-reducible for some i, then v is reducible.

Cusp: V (K∞)cusp ⊂ V (K∞) consists of v ∈ V (K∞) such that |v(χ)| < c1 for some
χ ∈ U0 where c1 is chosen so that if v ∈ V (O), |v(χ)| < c1 implies that v(χ) = 0.

There is a combinatorial condition on the characters of a that implies: the number of
irreducible points in cusp is small, the volume of the cusp is small,

(iii) The number of reducible points in the main body is small. Usually proved by p-adic
analysis.

Step 4 Impose soluble conditions at p 6∈M∞ via mp → upper bound.
Step 5 Uniformity estimate which gives a lower bound. This is done for Seln(E) for n = 2, 3, 4, 5.
Step 6 Local volume computation.

Theorem 8.6. (Bhargava-Shankar-Wang ) When elliptic curves over K are ordered by height,

Avg Seln(E) = σ(n)

for n = 2, 3, 4, 5.
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9. SINGULAR EXPONENTIAL SUMS ASSOCIATED TO PREHOMOGENEOUS VECTOR SPACES
OVER FINITE FIELDS

BY FRANK THORNE

Joint work with T. Taniguchi .

Example 9.1. Let V be the space of binary cubic forms, and take µp : V (Fp) → Z to be the
number of roots in P1(Fp), whose values lie in {0, 1, 2, 3, p+ 1}, and let [·, ·] : SL2 be an invariant
bilinear form identifying V with its dual. Define

[g ◦ x, g ◦ y] := [x, y] := x1y4 −
1

3
x2y3 +

1

3
x3y2 − x4y1.

x := x(u, v) = x1u
3 + x2u

2v + x3uv
2 + x4v

3, p 6= 3.

µ̂p(x) :=
1

p4

∑
y∈V (Fp)

µp(y) exp

(
2πi

p
[x, y]

)
.

Proposition 9.2.

µ̂p(x) =


1 + p−1 if x = 0

p−1 if x has a triple root
0 otherwise.

The idea is to count, for example, GL2(χ) orbits of (irreducible) binary cubic forms with discrim-
inant in ±(1, X). Call this count N±(X).

Let Φp describe some GL2(χ)-invariant condition “at p”.
(1) v ∈ Vχ is singular as a binary cubic form Fp.
(2) v has a triple root as a binary cubic form over Fp.
(3) (a) v is a multiple of p and (b) There is a GL2(χ)-transformation of v such that p2|v1, p|v2.

Write N±(X,Φp) or N±(X, p) for number of orbits satisfying condition described by Φp. If q
is square-free, we can write N±(X,Φq) or N±(X, q) for the number of orbits satisfying condition
for all p|q.

9.1. Sieve axiom.
We have

N±(X, q) = Cw(q) +O(Xαqβ)

where C is a constant, w is a multiplicative function, α < 1 and β are constants. This is often the
starting part for analytic number theory problems.

Example 9.3. Counting fields of degree ≤ 5.

Example 9.4. (Belabas-Fouvry) Almost prime discriminants of cubic fields. They did it without
using any power-saving error terms in Davenport-Heilbronn, for example.

Example 9.5. (Yang, Cho-Kim) Low lying zeroes of Artin L-functions.

Example 9.6. (Martin-Pollack) Average prime not to split completely
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Example 9.7. (Lemke-Oliver-Thorne) Erdős-Kac for number field discs.

Compute the Fourier transform of Φp: characteristic function of those binary cubic forms over Fp
with a triple root.

p4Φp(y) =
1

p2 − p
∑

g∈SL2(Fp)

∑
m∈F×p

exp

(
2πi

p
[g ◦ (m, 0, 0, 0), y]

)

=
1

p2 − p
∑
g

∑
m

exp

(
2πi

p
[(m, 0, 0, 0), gy]

)

=
1

p2 − p
∑
g

{
p− 1 if [1 : 0] is a root of g ◦ y
−1 otherwise

.

9.2. What has been done so far.
Space Group Dimension
2⊗ 2 GL(2)×GL(3) 4
3⊗ 3 GL(2)×GL(3) 9

Sym2(2) GL(1)×GL(2) 3
Sym3(2) GL(1)×GL(2) 4
Sym2(3) GL(1)×GL(3) 6

Sym2(2)⊗ 2 GL(2)×GL(2) 6
Sym2(3)⊗ 2 GL(2)×GL(3) 2

Sym4(2) GL(1)×GL(2) 5
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10. EULER SYSTEMS AND JOCHNOWITZ CONGRUENCES
BY MASSIMO BERTOLINI

Theme: anti-cyclotomic Iwasawa theory. See Lecture 12 by Wei Zhang and Lecture 13 by Rodelfo
Venerucci. (See applications to converse of Gross-Zagier-Kolyvagin)

Let E be an elliptic curve of conductor N , f ∈ S2(N) the associated form: A = Af . p an
ordinary prime of E. K∞/K the anti-cyclotomic Zp-extension associated to K = Q(

√
−D).

We make the simplifying assumptions: Let N be square-free, (D,Np) = 1, p - N (if p | N ,
things are ok: use work of Skinner-Zhang ; see Verevucci’s Lecture 13)

N = N+N−, N+ :=
∏
q|N

q split in K

q, N− :=
∏
q|N
q inert

q.

Definite case: #{q|N−} is odd. This implies that sgnL(f/K, χ, s) = +1 for all χ : G∞ =

Gal(K∞/K) → Q×. Thus, we can define Lp(f) = Lp(f) · L(f)2 = (unit) · Lp(f)2 ∈ Λ =
Zp[[G∞]] by interpolating L(f/K, χ, 1), which are described in theorems.

R̂×\B̂x/B×, where B is the definite quaternion algebra of discriminant N−∞, R Eisenstein of
level N+ (̂ι = (·)⊗ Ẑ).

Theorem 10.1. (Definite Main Conjecture) (Bertolini-Darmon , Skinner-Urban , Bertolini-Verevucci
) For almost all good ordinary primes p,

Λ · Lp(f) = charΛ Selp∞(A/K∞)∨

Remark 10.2. We know that Lp(f) 6= 0 by Cornut-Vatsal .

Indefinite case: #{q|N−} is even. This implies that L(f/K, χ, 1) = 0. BSD implies that
Selp∞(A/K∞) should not be a Λ-cotorsion.

Heegner points on (R̂×\B̂× × 〈±/B×, B is an indefinite quaternion algebra of discriminant N−1

gives a class K(1) ∈ Ĥ1
φ(K∞, Tf ) = Tap(A), where if S is a finite set of primes, Ĥ1

S(K∞, Tf ) =

lim←−
cores

H1
S(Km, Tf ), K ⊂ Km ⊂ K∞. The latter corresponds to the situation where the Selmer group

with the conditions at ρ ∈ S relaxed.

Definition 10.3. (Indefinite Main Conjecture) (X. Wan if p is split , Bertolini-Verevucci in general
) For almost all good ordinary primes p,

Lp(f)Λ = charΛ (Selp∞(A/K∞)∨tors)

Remark 10.4. Work of B. Howard.

We describe the ingredients contained in the proof of the Indefinite Main Conjecture:

(i) Explicit reciprocity laws (Bertolini-Darmon , Skinner-Zhang)
(ii) Prove the full definite MC, adapting the induction of Bertolini-Darmon using Skinner-

Verevucci over Q.
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(iii) Reduce the indefinite Main Conjecture to the definite Main Conjecture.

(i) Assume that f is in the definite case.

Definition 10.5. ` - Np is n-admissible (n ≥ 1) with respect to (f,K, p) if:
(a) ` is inert in K,
(b) p|(`+ 1)− εa`(f), and pn - `2 − 1 (here ε = ±1 is a choice of sign).

If ` is n-admissible, then there exists f` ∈ s2(N`) arising on B` = indefinite quaternion algebra
of discriminant N−` such that f` ≡ f (mod pn). Write X` for the Shimura curve associated to Bl,
with N+-level structure. Set Tf,n = Tf/p

n = Tf` , Λn = Λ/pn. Heegner points on X` give a class
Kn(`) ∈ Ĥ`(K∞, Tf,n). Since ` is inert in K, that it is not split K∞/K. This implies that

Ĥ(K∞, `, Tf,n) ∼= H1(K`, Tf,n)⊗ Λn
∼= Λm ⊕ Λn.

Ĥ1
fin(K∞, `, Tf,n) ∼= Λm, Ĥ

1
sing(K`, Tf,n) ∼= Λm.

⇒ ∂` : Ĥ`(K∞, Tf,n)→ H1
sing(K∞, l, Tf,n) = Λm.

First reciprocity law: ∂`Kn(l) = Lp,n(f) = Lp(f) (mod pn).

Let `′ 6= ` be another n-admissible prime. υ`′ : Ĥ1
` (K∞, Tf,n)→ Ĥ1

fin(K∞, `
′, Tf,n).

Second reciprocity law: υ`′Kn(`) = Lp,n(f`,`′).

(ii) The induction: Lp(f) · Λ = charΛ Selp∞(A/K∞)∨. Look at the image of this relation under
χ : Λ→ O, which is a discrete valuation ring. Enough to check the definite MC for all n� 0 and
for enough χ. Induction on the order of vanishing of χLp,n(f) 6= 0 by Cornut-Vatsal . Can assume
that Selp∞(A/K∞)⊗χ O 6= (0) (Skinner-Urban ).
(iii)

(a) Use the second reciprocity law to relate the indefinite Lp(f) to Lp(f`).
(b) Compare Selpn(f) with Selpn(f`).
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11. SPECIAL VALUES OF RANKIN-SELBERG TYPE p-ADIC L-FUNCTIONS
BY ERNEST HUNTER BROOKS

11.1. p-adic Waldspurger formulas.
Recall in Urban’s Lectures 2-3, we saw Hida’s constructions of two p-adic L-functions LI, LII in-
terpolating special values of classical L-functions L(f, g, n).

The Bertolini-Darmon-Prasanna formula implies that, when f comes from an elliptic curve E
and g comes from a Hecke character, one has

LII(1) = (log(Q1))2,

where 1 is the trivial character, Q1 is a Heegner point on E(K).
What does this mean? Why is it relevant to counting problems? Why is it true? Under what
conditions?

11.2. p-adic logarithms.
When A/Qp is an abelian variety, there is a differential ω ∈ H0(A,Ω) and there is also a unique
locally analytic homomorphism

logω : A(Qp)→ Qp,

such that d logω = ω. Torsion points are obviously in the kernel of logω for any ω.

Conversely, if a point is in the kernel of logω for all ω (or all ω in a basis) then it is torsion.
The pairing

(P, ω) 7→ logω(P )

gives an isomorphism of p-adic Lie groups from the kernel of the reduction map to H0(A,Ω)∨.

11.3. Logarithms on curves.
Let C/Qp be a curve with a fixed base point P ∈ C(Qp), J its Jacobian, AJ : C → J (al-
gebraic, depends on P ). We get an embedding C → J using P . We get an identification
H0(C,ΩC) = H0(J,ΩJ). This gives for each ω ∈ H0(C,ΩC) a logarithm on C. The loga-
rithm on C depends on base point, but the induced map on Div0 does not.

If f : C1 → C2 os a morphism of curves, D is a degree zero divisor on C1, and ω is a 1-form
on C2, then

logf∗ω(D) = logω(f(D))

11.4. Elliptic curves.
Let E be an elliptic curve over Q with square-free conductor N , with associated weight 2 new
form f . Fix an imaginary quadratic field K of discriminant prime to N and factor N = N+N−,
where primes dividing N+ are split in K and primes dividing N− are inert. Now assume an even
number of primes divide N−.
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11.5. Rankin-Selberg L-functions.
Define parameters αp and βp by

Ep(E, s) = (1− αpp−s)−1(1− βpp−s)−1.

where Ep is the Euler factor for the L-function of E/Q at p. For p a prime of K not dividing the
discriminant of K or N , and χ a character of Cl(K), set

ER-S
p (E,χ, s) = (1− χ(p)αNp(Np)−s)−1(1− χ(p)βNp(Np)−s)−1

The global Rankin-Selberg L-function is (up to finitely many Euler factors)

L(E,χ, s) =
∏
p-Ndk

εR-S
p

It admits analytic continuation, and there is a completed L-function Λ which satisfies a functional
equation with centre s = 1 and sign ±1.

11.6. The Heegner hypothesis and the L-function.
Heegner hypothesis: N = N−N+ as before and assume for a moment that N− = 1.

Analytic consequence: forces sign in functional equation to be −1,

L(E,χ, s) = −L(E,χ, 2− s)

implying L(E,χ, 1) = 0.

Geometric consequence: There is an idealN ofK of normK, so a Heegner point P = [C/N−1 →
C/OK ] ∈ X0(N)(h).

11.7. Heegner points.
Thinking of χ as a character of Gal(H/K), set

Pχ =
∑

σ∈Gal(H/K)

χ−1(σ)P σ ∈ Div(X0(N))(H)⊗Q(χ).

Also set
Qχ = φ(Pχ)

where φ is the map coming from the modular parametrization. In particular, Q1 ∈ E(K).

11.8. Heights.
The height map ĥ extends to Div(E)(H) ⊗ Q(χ) in C. The height of a point in E(K) is zero if
and only if it is a torsion point.

Theorem 11.1. One has L′(E,χ, 1) = ĥ(Qχ).

Gross-Zagier 1987 : N− = 1, Skinner-Zhang 2001 : N− > 1 square-free, Yuan-S. Zhang, W.
Zhang 2013 : no assumptions.
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11.9. Applications to the conjecture of Birch and Swinnerton-Dyer.
BSD over K: Comparing Euler factors, one sees

L(E/K, s) = L(E, 1, s).

So if L′(E/K, s) 6= 0, then the Heegner point is non-torsion and consequently “analytic rank one
implies algebraic rank at least one.”

BSD over Q: Gross and Zagier apply a result of Waldspurger to show one can choose K such
that the above argument descends to Q.

11.10. Shimura curves.
Let B/Q be the indefinite quaternion algebra with discriminant N−, and fix a maximal order OB
in B.

There is an Eichler order of level N+, called OB,N+ in OB. Write ΓN+,N− for its group of norm
one elements.

The group ΓN+,N− acts on the upper half plane via

B ⊗ R→M2(R).

The quotient XC = H/ΓN+,N− is a Shimura curve. If N− 6= 1, the Shimura curve is compact.
There are no cusps. There are modular forms for ΓN+,N− , but they have no q-expansions.

11.11. Moduli-theoretic interpretation.
If N− 6= 1, the Shimura curve is compact. There are no cusps.

To τ ∈ H we attach the 2-dimensional complex torus

Aτ =
C2

OB
(
τ
1

)
There is an obvious embedding OB ↪→ End(Aτ ) and, moreover, Aτ admits a principal polariza-
tion. This motivates: a false elliptic curveA over a base scheme S is a p.p. relative abelian surface
over S together with an embedding OB ↪→ End(A).

11.12. Heegner points (again).
Because the pair (K,N+) satisfies the Heegner hypothesis, there is an embedding ι : K ↪→ B with

ι(OK) ⊂ OB,N+ .

Carayol shows that XC admits a canonical model X over Z
[

1
N

]
. Work of Shimura shows that the

image P of any τ ∈ H fixed by ι(K×) satisfies P ∈ X (H).
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11.13. Modularity.
Write X = XN+,N− for XQ. The usual Eichler-Shimura construction gives XN+,N− → E, but this
depends on a choice of a base point. ForN− = 1 it is usual to send the cusp at infinity to the origin.

For χ 6= 1 it doesn’t matter which base point we pick. On Shimura cures, replace P1 with εfP1
where εf ∈ Q[T] ⊂ Q(End[XN+,N− ]) is the projector εfH∗(XN+,N−) = H1(XN+,N−)[ωf ]. Then
εfP1 is degree zero and its image on Ef does not depend on any choices.

11.14. Gross-Zagier without the Heegner hypothesis.
One has a divisor Pχ on X(H) as before. There is an Eichler-Shimura parametrization φ : X → E
coming from f as above; write Qχ = φ(Pχ).

Theorem 11.2. (Zhang, 2001 ), (Yuan-Zhang-Zhang, 2013 ) One has

L′(f, χ, 1)
.
= 〈Qχ, Qχ〉.

11.15. First step toward p-adic L-functions.
By analogy with the definition of the Kubota-Leopoldt p-adic L-function, one wants to define a
p-adic L-function by interpolation of special values of L(f, χ, n).

Normalization: if we let χ vary over a family of Hecke characters, we may assume n = 0. A
Hecke character is a character of AK/K×. The restriction of such a character to C× is called its
“infinity type”. It is of the form

z 7→ z−l1z−l2

and we call the pair (l1, l2) the infinity type of the character.

11.16. Hecke characters of K, (2/2).
The central line l1 + l2 = 2 corresponds to Hecke characters such that is the centre of the functional
equation for L(f, χ).
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In the blue region consisting of characters of type (1, 1), the sign of the functional equation is
negative. In the green region, the sign of the functional equation is positive. Thus, the classical
L-function does not vanish at the center, even under the Heegner hypothesis! The sign of the
functional equation for characters in the orange region is positive, but the orange region will not
be used today. At each unshaded lattice point, some Γ-factor in the functional equation has a pole
at s = 0. We won’t use these today.

11.17. The p-adic L-function LI.
Fix a prime p > 2 which splits in K, with (p,N) = 1.

Theorem 11.3. (Hida, 1988 ) There is a p-adic L-function LI(E,χ), where χ ranges over central
critical Hecke characters. It satisfies an interpolation law of the form

LI(E,χ)
.
= L(E,χ−1, 0)

for χ central critical in the blue region.

The real and p-adic periods hidden in the .
= depend on E and not on χ.

11.18. Known results on LI.
By the interpolation law, LI(1) = 0. The interesting invariant is LI′(1).

• Perrin-Riou (1987) : LI′(1)
.
= 〈Q1, Q1〉P (under Heegner hypothesis)

• Nekovár (1995) : higher weight version

Q1 → Heegner cycle on E → X0(N)

• Disegni (2013) : drops Heegner hypothesis from Perrin-Riou/Nekovár.
• Shnidman (2014) : allows twists by infinite-order Hecke characters.

11.19. The p-adic L-function LII.

Theorem 11.4. (Hida, 1988 ) There is a p-adic L-function LII(E,χ), where χ ranges over central
critical Hecke characters. It satisfies an interpolation law of the form

LII(E,χ)
.
= L(E,χ−1, 0)

for χ central critical in the green region.

Remark 11.5. This is LII from Lecture 3. The periods which occur are periods of Hecke characters
(= periods of CM abelian varieties).

11.20. Known results on LII.
No reason LII(1) has to be zero. Instead, as mentioned above, one has

Lp(1)
.
= (log(Q1))2
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11.21. Assumptions needed for Bertolini-Darmon-Prasanna formula.

• Bertolini-Darmon-Prasanna 2009 : Heegner hypothesis, p - N . Also higher weights for-
mula (generalized Heegner cycles).
• Masdeu 2011 : drops Heegner hypothesis, (p||N−) different p-adic L=function (p inert).

Higher even weight.
• Castella 2011 : p|N , higher weight.
• Brooks 2013 : drops Heegner hypothesis, p - N . Higher even weight (generalized Heegner

cycles).
• Liu, S. Zhang, W. Zhang 2013 : no assumptions except p split! Formulas for Shimura

curves over totally real fields.

11.22. Applications to analytic rank.

Theorem 11.6. (Skinner, Theorem B) Suppose:

• (as above) p is split in K, N = N+N− is square-free, prime to d(K), satisfies the gener-
alized Heegner hypothesis with respect to K.
• p ≥ 5, E is p-ordinary, 2 splits in K.
• The mod pGalois representationE[p] ramifies at some odd prime which is inert or ramified

in K.
• dim SelI(K,V ) = 1 and H1

f (K,V ) ↪→ H1
f (Kp, V )⊕H1

f (Kp, V )

Then
ords=1 L(E,K, s) = 1.

Proof. (sketch)

• The cohomological hypotheses imply

ker(H1(K,V )→
⊕
w 6=p

H1(Kw, V )) = 0.

• X. Wan’s divisibility in the main conjecture plus Galois cohomology (Skinner’s lemma,
Monday) implies that LII(1) 6= 0.
• Bertolini-Darmon-Prasanna implies that Q1 is not torsion. Thus we may conclude rank 1

from Gross-Zagier.

�

11.23. Sketch of BDP proof.
Archimedean Waldspurger Formula: For χ of infinity type (2 + j,−j) with j ≥ 0, one has (with
.
= denote the meaning of equal up to a p-adic unit),

L(f, χ−1, 0)
.
=

∣∣∣∣∣∣
∑

Cl(K)

χ−1(a)NajδjM−Sf(a−1, 2πidz)

∣∣∣∣∣∣
2

Here,

• δM−S = 1
2πi

(
d
dτ

+ k
2i Im τ

)
• δjM−Sf(a−1) does not make sense, but δjM−Sf(a−1, 2πidz) “does”.
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Atkin-Lehner argument: Remove absolute values (at the cost of more hidden in .
=).

Algebraize: Replace 2πidz with a differential ωH on Ea defined over H .

L(f, χ−1, 0)

Ω
2(2+j)
C

.
=

∑
Cl(K)

χ−1(a)NajδjM−Sf(a−1, ωH)

2

Katz theorems on differential operators: both sides are algebraic. Can replace δM−S with θ = q d
dq

(operator on p-adic modular forms).

p-adic interpolation: For p-adic interpolation of these algebraic numbers, replace f with p-depletion,
f [, and replace ωH by a p-adic transcendental form ω̂. The first drops an Euler factor at p; the sec-
ond produces a p-adic period Ωp.

p-adic formula: Get a p-adic analytic function Lp (this is LII) by

Lp(χ)

Ω
2(2+j)
p

: = Ep(f, χ−1, 0)
L(f, χ−1, 0)

Ω2(2+j)

.
=

∑
Cl(K)

χ−1(a)NajδjM−Sf
[(a−1, ω̂)

2

Letting j → −1 p-adically (i.e. in weight space) and χn → 1, we get that

Lp(1)
.
= Ep(f, χ−1, 0)

(∑
(θ−1f [(a, ω̂))

)2

Relate θ−1 to log: both coincide with the Coleman primitive. Use BDP to compute with p-adic
modular forms as uniform limits (in the p-adic topology) of q-expansions of modular forms with
integral Fourier coefficients. This definition does not make sense for Shimura curves, which is the
major obstruction to dropping the Heegner hypothesis.

11.24. p-adic modular forms in the proof of BDP.
As above, the theory of Coleman integration gives the following formula:

logωf = θ−1(f [) = θ−1(f |1−UV ).

p-adic Hecke operators (Serre ):

f |U(q) =
∑

anpq
n, f |V (q) =

∑
anq

pn.

p-adic differential operator (Ramanujan-Atkin-Serre):

θ = q
d

dq
, and θ−1f = lim

i→∞
θp

i(p−1)−1f.
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11.25. The case of Shimura curves.
With definitions on the previous slide, the formula

logωf = θ−1(f |1−UV )

is meaningless for f on a Shimura curve. However, Katz’s geometric interpretation of p-adic
modular forms in the classical case generalizes to Shimura curves (Kassaei, Ph. D thesis ).

11.26. The p-adic geometry of Shimura curves.
Write k = Fp, W = Witt(k) = ÔQur

p
, L = Frac(W ). For the remainder of the lecture, X can be a

Shimura curve or modular curve over L. There is no canonical model X for X/W :

11.27. The reduction map.
The model X is proper over W and thus one has a map of sets:

X(L) = X (W ) 7→ X(k).

11.28. Residue disks.
For a fixed P ∈ X(k), the finer in X(L) above P is called a residue disk. It has a natural structure
of rigid analytic space, conformal to the open unit disk in L.

37



11.29. The ordinary locus.
The ordinary locus Xodd is the affinoid obtained from X by deleting the (finitely many) residue
disks above points corresponding to super singular [false] elliptic curves.

11.30. Geometric interpretation of p-adic modular forms.
Recall that a classical modular form of weight k for Γ1(N) is a global section of ω⊗k on the
modular curve, where ω is the push forward of the relative differential bundle on the universal
elliptic curve. One has

ω⊗2 = ΩX

There is a similar bundle for Shimura curves (one needs to choose a projector as the obvious ana-
logue is a rank 2 vector bundle).

Katz showed that a p-adic modular form of weight k gives rise to a section of ω⊗k over the or-
dinary locus.

11.31. Geometric interpretation of θ.
There is a rank two vector bundle V on X which comes with a flat connection ∇ and an inclusion
ω ⊂ V . In the modular case, V is the first relative cohomolgy bundle of the universal elliptic curve
(the connection has singularities at the cusps). In the Shimura curve case, the relative cohomology
bundle of the universal abelian surface is too big. Get a sub-bundle from same projector as before.

By a theorem of Dwork and Katz, over the ordinary locus, the inclusion ω → V splits:

Ψ : V → ω

In the modular curve case, Serre’s operator θ coincides with the composition

ω⊗k → V⊗k →∇ V⊗k ⊗ ΩX →Ψ⊗k ω
k ⊗ Ω→ ωk+2.

We take this as the definition of θ in the Shimura curve case.

11.32. Geometric interpretation of p-adic Hecke operators.
Recall that Hecke operators Tl on the space of modular forms are pullbacks induced by correspondence
on modular or Shimura curves. Recall that an elliptic curve with good ordinary reduction over Qp
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has a canonical subgroup of order p - namely the unique C such that

E → E/C

lifts the Frobenius map on the reduction. Similarly a false elliptic curve has a unique sub OB-
module lifting the kernel of Frobenius.

Katz showed that V is induced by the correspondence

A 7→ A/C.

Similarly, U is induced by the correspondence

A 7→ 1

p

∑
Ci 6=C

(A/Ci).

Take these as definitions in Shimura curve case.

11.33. Uniformization of ordinary residue disks.
Start with E an elliptic curve over L with good ordinary reduction; call the reduction E. Pick a
generator P ∈ Tp(E)(k). Lift to P̃ ∈ Tp(E)(L). For σ ∈ Gal(L/L) map σ 7→ (P̃ σ, P̃ ) ∈ Zp(1).
This is a cocycle (!), call it ξE .

Theorem 11.7. (Serre-Tate) The association E → ξE gives an embedding

D = {Lifts of E to L} → H1(L, Tp(1)) = L×.

The image is the set 1 + pW of norm one elements. So D has a natural group structure! Similarly
for false elliptic curves.

11.34. Another way to say the same thing.
For a [false] elliptic curve E in the fixed residue disk D, we have a tautological sequence of p-
divisible groups:

0→ Ê(L)[p∞]→ E(L)[p∞]→ E(K)[p∞]→ 0

The left hand group depends only on E and not E , because it’s Hom(E∨(k)[p∞],Zp(1)).

Theorem 11.8. (Serre-Tate) The curve E is determined by the class of this extension, and (picking
a generator of Tp(E))

D = Ext1(Qp/Zp, µ∞p ) = 1 + pW.

11.35. Serre-Tate coordinates.
Serre-Tate theory identifies the ring of rigid functions on D with

W [[T ]]

[
1

p

]
where T : D → 1 + pW

x 7→x−1→ pW. The bundle ω trivializes on the disk D. Write ω̂ ∈ ω(D) for
a non-vanishing section obtained by choosing an isomorphism Â → Ĝm and pulling back dT/T .
We can express a modular form of weight k on D by an expression of the form F (T )ω̂⊗k.
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11.36. Formulas in Serre-Tate coordinates.
Differential operator: Using computations of Brakocevic (2012) and Mori (2011), one can show

θ(F (T )ω̂⊗k) = (1 + T )F ′(T )ω̂⊗k+2

p-adic Hecke operators: One has

(F (T )ω̂⊗k)|UV =
1

p

p−1∑
i=0

F (ζ i(1 + T )− 1)ω̂⊗k

where ζ ∈ Qp is a fixed non-trivial choice of p-th root of 1.

Making sense of the antiderivative θ−1 and establishing the BDP formula is then a matter of ana-
lyzing these power series operators, which is straightforward.
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12. KOLYVAGIN’S CONJECTURE ON HEEGNER POINTS
BY WEI ZHANG

12.1. Theorems. Let E/Q be an elliptic curve, (f ∈ S2(N),Γ0(n)-level). E(Q) corresponds to
a L-function, say L(E/Q, s). For n ≥ 1, we obtain the exact sequences

0→ E(Q⊗ Z/nZ→ Seln(E/Q)→X(E/Q)n → 0

0→ E(Q)⊗Qp/Zp → Selp∞(E/Q)→X(E/Q)p∞ → 0

Define

rp(E/Q) := rankZp Hom(Selp∞(E/Q),Q/Z)

Note that 0 ≤ ralg ≤ rp. Equality condition is is equivalent to the assertion that Xp∞(E/Q) is
finite.

Theorem 12.1. (Gross-Zagier , Kolyvagin) rank(E/Q) ≤ 1 implies that ralg(E/Q) = ran and
#X(E/Q) <∞.

Theorem 12.2. (Kato , Skinner-Urban ) For p good ordinary (plus extra conditions), we have

rp = 0 is equivalent to ran = 0.

(and now the refined BSD), ∣∣∣∣L(E/Q, 1)

Ω

∣∣∣∣
p

=

∣∣∣∣∣∣#X(E/Q)
∏
`|N

c`

∣∣∣∣∣∣
p

,

where c` are the local Tamagawa number.

What about when rp = 1?

Theorem 12.3. (W. Zhang)
(1) For p ≥ 5, good ordinary, and
(2) ρ∈p : GalQ → Aut(Ep) ∼= GL2(Fp) surjective, ramified at least at two `||N , and ramified at
all `||N such that ` ≡ ±1 (mod p).
Then

rp = 1⇔ ran = 1⇔ ralg = 1 and #X <∞.

Remark 12.4.

(1) Joint work with Skinner p||N + extra condition .
(2) Skinner with cohomological condition .

(3) For refined BSD(p), Reg(E/Q) =
〈y, y〉NT

[E(Q) : Zy]2
, where 〈·, ·〉NT is the Néron-Tate pairing.

(4) Selp(E/Q) =

{
0,

Z/pZ,
implies ran =

{
0,

1,
respectively.

41



12.2. Heegner points on Shimura curves.
Let K = Q(

√
−D). N = N+N−, where

N+ =
∏
`|N
` split

`, and N− =
∏
`|N
` inert

`.

Recall the Heegner hypothesis : N− is square-free, and ν(N−) := #{` : `|N−} is even. Let
K∞ ⊃ K ⊃ Q, where Kn/K are the ray class fields, and Gal(Kn/K) = Pic(OK,n) under the
Artin map, withOk,n := Z+nOK , hence K1 is the Hilbert class field. Let XN+N− be the Shimura
curve attached to the quaternion ramified at N− with Γ0(N+)-level, and φ : XN+N− → E and
continuous deformation to the “Heegner points”, Pn ∈ E(Kn), P1 ∈ E(K1), yK = trK1

K P1 ∈
E(K).
Then the Gross-Zagier formula is:

〈yK , yK〉
deg(φ)

=
L′(E/K, 1)

1√
|D|
〈f, f〉pm

.

Definition 12.5. ` - NpD are called Kolyvagin primes if ` is inert in K, p| gcd(` + 1, a`) i.e.,
dimFp E(F`2)/p = 2. Define

Λ : = {n =
∏
`

` : square-free product of Kolyvagin primes},

κ : = {c(n) ∈ H1(K,Ep) : n ∈ Λ}.
For M ≥ 1,

κM : = {cM(n) ∈ H1(K,EpM ) : n ∈ ΛM}

κ∞ : =
⋃
M>1

κM ,

where κ∞ is called a “Kolyvagin system”. SelpM (E/K). For n = 1, cM(1) satisfies

E(K)/pmE(K)→ H1(K,Epm)

yK ∈ E(K) 7→ CM(1).

K∞ :=
⋃
M≥1

κM 6= 0 if yK is non-torsion

Definition 12.6. (Vanishing order)

ordK∞ := min
cM (n)6=0

ν(n)

Example 12.7. ordκ∞ = 0⇔ cM(1) 6= 0⇔ yK is non-torsion⇔ ran = 1.

12.3. Kolyvagin conjecture.

Conjecture 12.8. K∞ 6= {0} at least cM(n) 6= 0 for some M ≥ 1, n ∈ Λ (ordK∞ <∞).

Theorem 12.9. (Kolyvagin) Assuming the conjecture, we have

κ∞ = max{rp(E/K)+, rp(E/K)−} − 1.
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• For M ≥ 1,

ordκM = max{rank SelpM (E/K)+, rank SelpM (E/K)−} − 1.

• For M = 1,

ordκ1 = max{dimFp Selp(E/K)+, dimFp Selp(E/K)−} − 1

Theorem 12.10. Under earlier assumptions, κ∞ 6= 0. Indeed, κ1 6= 0.

Remark 12.11. For rank = 1, this is new.

Proof. rp(E/K) = 1 ⇐ (GZK)ran = 1 ⇔ Jκ non torsion ⇔ ordκ∞ = 0. Further, rp(E/K) =
1⇔ max{rp(E/K)+, rp(E/K)−} = 1⇔ ordκ∞ = 0. �

Admissible BD , m = q1q2 · · ·
f mod p = fm mod p

κ(1) = {c1(n) ∈ H1(K,Ep) : n ∈ Λ}
κ(m) = {c1(n,m) ∈ H1(K,Ep) : n ∈ Λ}

“κ(1) ≡ κ(m)” known as Jochnowitz congruence or Bertolini-Darmon congruence .
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13. ON THE p-CONVERSE OF THE KOLYVAGIN-GROSS-ZAGIER THEOREM
BY RODOLFO VENERUCCI

Let A/Q an elliptic curve of conductor NA, p an odd prime such that p||NA and p is of multiplica-
tive reduction.

Theorem 13.1. Under some technical assumptions ,

ords=1 L(A, s) = 1⇐⇒ rankZA(Q) = 1 and #X(A/Q)p∞ <∞

Credits:

• When p splits multiplicatively, Venerucci using Bertolini-Darmon and Skinner-Urban, Skinner-
Zhang using Bertolini-Darmon and Skinner-Urban.
• When p even split multiplicatively: Bertolini-Darmon and Skinner-Urban (+ε).

From now on: rankZA(Q) = 1 and X(A/Q)p∞ is finite.

13.1. The p-converse for split multiplicative primes.
A/Qp has split multiplicative reduction, that is, GQp � A(Qp) ∼= Q∗p/qAZ, qA ∈ pZp, Tate’s power
of A/Qp. K/Q imaginary quadratic such that

(i) p splits in K,
(ii) ords=1 L(A,χK , s) = 1 (here χK is the quadratic character of K).

Remark 13.2. For K to exist we have to assume that there exists q 6= p with q||NA.

ρ = ρA,p : GQ → Aut(Tp(A)) ∼= GL2(Zp)
ρ∞ : GQ → GL2(R)

Pride’s “central non-trivial” p-ordinary deformation of Top(A).

R is a regular, finite, flat over Zp[[x]] ↪→ A(u), which is a Qp-valued locally analytic functions
over a p-adic disc, and 2 ∈ U . Define

Ud := U ∩ Z≥2
even.

For every k ∈ Ud, ρk : gQ → GL2(R)→ Qp.

ρ2
∼= ρ; ρk =

{
p-adic Deligne representation
of an eigenform fk ∈ Sk(Γ0(NA),Zp)

(κ/2) as in Urban’s Lectures 2-3, we

can attack to these slate.

1) Mazur-Vritopound Lp(ρ∞/K) = Lp(ρ∞) · Lp(Lχkχ ) ∈ R such that u ∈ Ud.

Lp(ρ∞) = (1− pn/2−1) · L(fn, n/2)alg ∈ Qp

The fact that ρ(f∞, 2) = 0 forces both Lp(ρ∞) to vanish to order at least 2.

2) “Big” Selmer group: Sel(ρ∞) ⊂ H1(Q, ρ∞ ⊗ R∨) such that X(ρ∞) = Sel(ρ∞)∨. Then:
X(ρ∞)κ = X(ρ∞) ⊗R,evκ Qp ∼ H1

f (Q, ρκ), for all but finitely many κ ∈ Ud. Moreover,
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X(ρ∞)∗2
∼= Ã(Q)⊗Qp = A(Q)⊗Qp ⊕ qAQp.

We want to prove: ords=1 L(A/K, s) = 2 (if and only if ords=1 L(A, s) = 1). This will follow by
these main steps (“Essence of Iwasawa theory”).

Step A (Skinner-Urban) Write char(ρ∞) = charR(X(ρ∞))R/R∗. char(ρ∞/K) = char(ρ∞) =
char(ρλK∞ ).

ordκ=2 Lp(ρ∞.Q) = (L±p , · · · ) ≤ ordκ=2 char(ρ∞/K)

Remark 13.3. The result of Skinner-Urban is over K, for p split.

Step B (Bertolini-Darmon)
d2

dx2
Lp(ρ∞) = log2

A/Qp(P?),where P? ∈ A?(Q)⊗Q is a Heegner point

coming from a Shimura curve Pix of A?.

By Gross-Zagier-Zhang formula, P? 6= 0 if and only if ords=1 L(A?, s) = 1, so

ords=1 L(A/K, s) = 2 if and only if ordκ=2(ρ∞/K) = 2.

Step C Prove that ordκ=2 char(ρ?
∞) = 2 (≥ 2 is easy). Use algebraic BSD formula

d2

dκ2
char(ρ?

∞)κ=2 = det(〈·, ·〉Nek
ρ∞,2)

where 〈·, ·〉Nek
ρ∞,2; Ã?(Q) × Ã?(Q) → Qp, is alternating and “arithmetically” defined by

Néron’s Poitou-Tate for Selmer complexes.

We prove that for all p ∈ A(Q), 〈p, qA〉 = logA/Qp(P ). This implies

d2

dn2
char(ρ?

∞) = log2
A/Qp(P ),

PZ = A?(Q)/tors. Then,

2 ≤ ordκ=2 Lp(ρ0/κ) ≤ ordκ=2 char(ρ∞/K) = h,

so BD follows.

13.2. Non-split case.
Let K/Q be imaginary quadratic, p inert in K. E/Kp has split multiplicative reduction.
(i) L(A,χK , 1) 6= 0⇒X(A/K)p∞ <∞
(ii) rankZA(K) = 1.

Remark 13.4. We are in the definite case.

ρ∞ : GK → GL2(Λ),Λ = Zp[[Gal(K∞/K)]] � A(Zp)

Lp(ρ∞/K) = Lp(fA); char(K∞/K) = charΛ Selp∞(A/K∞)∨

Remark 13.5. Since A/Kp has split multiplicative reduction we have ords=1 L − p(ρ∞/K) ≥ 2,
ords=1 char(ρ∞/K) ≥ 2.

We want to prove that ords=1 L(A/K, s) = 1 We thus have:
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Step A (Bertolini’s Lecture 10)
Step B (Bertolini-Darmon )

d2

ds2
Lp(ρ∞/K) = log2

A/Qp(PK − ap(A)PK).

with the assumption ap(A) = 1, where PK is “the” Heegner point coming fromXN+
A ,N

−
A
→

A. This implies

ords=1 L(A/K, s), ords=1 Lp(ρ∞/K) = 2

Step C
d2

ds2
char(ρ∞/K) = #X(A/K)p∞ , log2

A/Qp(P ).
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14. IWASAWA MAIN CONJECTURE FOR RANKIN-SELBERG p-ADIC L-FUNCTIONS
BY XIN WAN

14.1. Iwasawa-Greenberg main conjecture.
Suppose T is a p-adic Galois representation for GQ and dimT = d. Let d± be the dimension of
the eigenspace over C corresponding to ±1, respectively. Suppose T is geometric, so that

V ⊗ Cp
∼=
⊕
i

Cp(i)
hi ,

where Cp is the algebraic closure of Qp, and Cp(i) refers to a Tate twist with i. Further, assume∑
i≥1 hi = d+.

14.2. Panchishkin condition.
V contains a Qp-subspace Wp which is invariant under Gp such that

W ⊗ Cp
∼=
⊕
i≥1

Cp(i)
hi .

If Wp exists, denote it by F+V . Define F+(T ⊗Qp/Zp), the image of F+V .
Greenberg defined

H1
f (Gp, T ⊗Qp/Zp) := ker

{
H1(Gp, T ⊗Qp/Qp)→ H1(Ip,

T ⊗Qp/Zp
F+(T ⊗Qp/Zp)

}
H1
f (GQ, T ⊗Qp/Zp) := ker

{
H1(GQ, T ⊗Qp/Zp)→

∏
l 6=p

H1(Il, T ⊗Qp/Zp)×
H1(Gp, T ⊗Qp/Zp)
H1
f (GQ, T ⊗Qp/Zp)

}
Example 14.1. Let K/Q a quadratic imaginary field extension and suppose that p splits as v0v0.
Let gξ be a CM form for a Hecke character ξ of K. Let f be a cuspidal eigenform.

Case 1: If weight gξ < weight f, then the Panchishkin condition is true if and only if ordering
at p

f =
∞∑
n=1

anq
n, p - ap

Case 2: if weight gξ > weight f , then the Panchishkin condition is always true.

14.3. Iwasawa theory.
Let K/Q be a quadratic imaginary extension of Q, K∞/K the unique Z2

p-extension unramified
outside. Λ = Zp[[Γ]], Γ = Gal(K∞/K).

Definition 14.2.

SelK∞(T ⊗Qp/Zp) := lim
K⊂K′⊂K∞

SelK′(T ⊗Qp/Zp)

XK∞(T ) := (SelK∞(T ⊗Qp/Zp))∗

finite Λ-modules.
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14.4. Analytic side.
Conjecturally: p-adic L-functions Lp,K∞(T ) ∈ Λ parametrizes the “algebraic” part of special L-
values of L(T ⊗ χ, 0) for χ finite order characters of Γ.

Conjecture 14.3. Iwasawa-Greenberg main conjecture: XK∞(T ) is a Λ-torsion and charΛ(XK∞(T )) =
(Lp,K∞(T )) as ideals of Λ. charA(M) = {x ∈ A| ordP x ≥ logAP (MP )} for any height on prime
P of A.

Theorem 14.4. (X. Wan ) Let f be a weight 2, trivial character cuspidal eigenform. Suppose 2
splits in K, p ≥ 5, conductor N of f is square-free and divisible by at least one prime non-split in
K. Suppose k > 6, k ≡ 0 (mod p− 1). If the p-adic avatar of ξ|·|k/2(ω−1 · Nm) factors through
ΓK , then

Lf,K∞(ρf ⊗ ρgξ) ⊃ charΛ⊗ZpQp(Xf,K∞(ρf ⊗ ρgξ).

Families of Klingen Eisenstein series on U(3, 1) are congruent modulo Lp,K∞ to a cusp form on
U(3, 1). Further, it is a reducible Galois representation and thus congruent to “more irreducible”
representations. The congruence can be established via a lattice construction to elements in Selmer
group.

How to construct family of Klingen Eisenstein series?

U(3, 1),

 1
ζ

−1

 , ζ ∈M2, Γζ is diagonal.

P is upper triangular, Klingen parabolic. Using the doubling method , U(3, 1) × U(0, 2) ↪→

U(3, 3). Siegel Eisenstein series in U(3, 3) (induced from Siegel parabolic Q =

(
∗ ∗
0 ∗

)
⊂

U(3, 3). τ is a Hecke character of K×. Then

EKling(τ, f, g1) =

∫
U(0,2)Q\U(0,2)(A)

ESieg(τ, (g1, g2))τ(det g2)f(g2)dg2

Hard part: make choices of primes above p.

• it is more about doing things p-adic analytically
• pulls back to (semi)-ordering Klingen Eisenstein series
• the Fourier-Jacobi coefficients (not too difficult to calculate)

Turns out that Siegel-Weil sections whose Fourier coefficients for

S =

a b c
d e f
g h j


is non-zero if and only if S has Zp entries and b ∈ Z×p , det

(
b c
e f

)
∈ Z×p .
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In this case Fourier coefficients (local) of S to be ξ1(b)ξ2

det

b c
e f


det b

, ξ1, ξ2 depend on τ .

Choice motivated by differential operators.

14.5. Study the Fourier-Jacobi coefficients.
Need: Fourier-Jacobi coefficients are co-prime to p-adic L-function.

U(3, 1), N =


1 ∗ ∗ ∗

1 ∗ ∗
1 ∗

1

 , U =


1
∗ ∗
∗ ∗

1

 , β ∈ Q+, F any form

FJβ(F ) =

∫
F




1 t
1

1
1

 g

 e(−βt)dt

considered as a function on NU .

We have algebraic definitions for Fourier-Jacobi coefficients involving global sections of line bun-
dles L(β) on 2-dimensional CM abelian variety (theta function CM). Can construct another θ, on
NU (U(1)↔ u(2)).

Lθ1 : M(NU(Q)\NU(A)→M(U(Q)\U(A))

Lθ1(G)(u) =

∫
N(Q)\N(A)

G(nu)θ1(nu)du

(can be made algebraic).

We construct auxiliary Hida family h on U(2) and study

〈Lθ1FJβ(F ), h〉 ∈ Ql[[ΓK ]]

Idea: doubling method.

FJβ(ESieg(g) =

∫
E

τ,


1 t
1

1
1

 g

 e(−βt)dt

considered as function on U(2, 2) ·N .

N ⊂ N ′ ⊂ U(3, 3)

restrict to P × U(0, 2).

A calculation shows
FJβ(ESieg) = E ′ ·Θ
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E ′ is the Siegel Eisenstein series on U(2, 2), Θ theta function on U(2, 2) ·N ′, and another calcula-
tion shows

Θ|P×U(2,2) = θ2 � θ3

θ2, θ3 are theta functions on P and U(0, 2). Easy to see Lθ1(θ2 is a constant function on U(2, 0).
Set

A = 〈Lθ1 , FJ1(EKling), h〉 = B

∫
U(2)×U(2)

E ′(g1, g2) · h(g1) · θ3(g2)f(g2)dg1dg2

= B · LXn
∫
U(2)

h(g2)θ3(g2)f(g2)dg2

triple product U(2)× U(2) ↪→ U(2, 2) take h family of CM forms. Triple product L1 · L2, Hecke
on non-vanishing modulo p of special L-values.
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15. LEVEL RAISING MOD 2 AND ARBITRARY 2-SELMER RANKS
BY LI CHAO

15.1. Motivation.
Let E/Q be an elliptic curve. The celebrated B-SD conjecture says that

rank(E(Q)) = ords=1 L(E, s).

The B-SD conjecture actually asserts something more refined. Indeed, they conjectured that in fact
we have the following formula

L(r)(E, 1)

r!Ω(E)R(E)
=

∏
p cp ·#X(E)

(#E(Q)tor)2

B-SD(`): r = 0, ` ≥ 3, Skinner-Urban , Kato .
(with additional conditions): r = 1, ` ≥ 5, W. Zhang .

Question: What about ` = 2? Why care about it?

Remark 15.1. For the B-SD formula itself, the prime 2 is the most important to examine because
it appears as a factor the most often.

r = 1, E corresponds to some f .

f ∈ S2(N), f ≡ g ∈ S2(Ng) (mod `)

where g corresponds to some elliptic curve of rank 0 (level raising). This is done via something
called the Jochnowitz congruence, due to Bertolini-Darmon .

We want a pseudo-congruence of the form

L(f, 1)“ ≡ ”L(g, 1) (mod `)

which makes no sense, as both sides are transcendental numbers. To get an expression that makes
sense, we choose an auxiliary imaginary quadratic field K corresponding to yK ∈ E(K) with

` - yK ⇔ Sell(A/K) = 0

15.2. Level raising.
Let ` be a prime number and

ρ` = ρE,` : GQ → Aut(E[`]) = GL2(F`)

Write the corresponding modular form as

f =
∑
n≥1

anq
n

Definition 15.2. A prime q - N` is level raising (mod `) for E if

ρ(Frobq) = ±
(

1 ∗
1

)
⇔ aq ≡ ±(q + 1) (mod `)
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Theorem 15.3. (Ribet) If ρ is absolutely irreducible and q is a level raising prime, then there exists
g ∈ S2(Nq) new at q such that f ≡ g (mod `).

Theorem 15.4. (Diamond-Taylor) If ρ (` ≥ 3) is absolutely irreducible and q1, · · · , qm are level
raising, then there exists g ∈ S2(Nq1 · · · qm) new at each qi such that f ≡ g (mod l).

Remark 15.5. g =
∑
n≥1

bnq
n, F = Q({bn}), there exists λ|` of F such that ap ≡ bp (mod λ) for all

p 6= q1, · · · , qm.

Example 15.6. E = X0(11), l = 3, q = 7. a7 = 2 ≡ −8 ≡ −(7 + 1) (mod 3).
See table (tex later).

Remark 15.7. At p||Nq1 · · · qm, bp ∈ {±1}.

(i) p||N , bp = ap (bp ≡ ap (mod `))
(ii) p = qi 6≡ −1 (mod `), the bp is determined.

(iii) p = qi ≡ −1 (mod `), Ribert proved both bp = ±1 can occur.

For l = 2, can bp = ap? The answer is no. Can both signs occur? The answer is yes.

Assumptions (?):

(1) E is good at 2.
(2) ρ : GQ → GL2(F2) = S3 is surjective.
(3) N(ρ) = N .
(4) ρ|GQ2

is non-trivial (i.e. 2 does not split in Q(E[2])).

Theorem 15.8. (C. Li) Assume (?) and q1, · · · , qm are level raising. Further, suppose p||Nq1 · · · qm
and let εp ∈ {±1} prescribe sign. Then there exists g ∈ S2(Nq1 · · · qm)New such that f ≡
g (mod 2) and bp = εp for all but possibly one p||N .

Example 15.9. f = 11a, q1 = 7, q2 = 13. See table, tex later.

Example 15.10. f = 35a, q = 19. See table, tex later.

Strategy:

(1) DτT breaks down for ` = 2 because of Fontaine-Laffaille theory . This can be salvaged
for E super singular at 2.

(2) E ordinary at 2. Key ingredient: P. Allen , big(R) = big(T ) for nearly ordinary 2-adic
representations with dihedral image.

(3) In both cases, a level raised form with prescribed signs everywhere but possibly ramified
at one auxiliary prime q0. Quadratic twist back get rid of q0 at the cost of not prescribing
one bp, p||N .

15.3. 2-Selmer ranks.
Recall our f, g corresponding to elliptic curves E,A of rank 1, 0 respectively, such that

f ≡ g (mod 2).

(A 	 O = OF , k = O/λ).
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E[2]⊗ k ∼= A[λ]

Sel2(E)⊗ k ↪→ H1(Q, E[2]⊗ k) = H1(Q, A[λ])

Note that Selλ(A) ↪→ H1(Q, A[λ]).

Theorem 15.11. Assume conditions (?) and E has negative discriminant. Then for all n ≥ 0,
there exist infinitely many A in the level raising family such that

dimk SelΛ(A) = n.

Compare with

Theorem 15.12. (Mazur-Rubin) Assume conditions (?) and E has negative discriminant. Then
for all n ≥ 0, there exist infinitely many E(d) in the quadratic twist family such that

dimF2 Sel2(E) = n.

15.4. Bad news.

Theorem 15.13. Under certain conditions,

rank Sel2(E/K) = 1⇒ rank SelΛ(A/k) = 2.

E = X0(11).

p A dK rank(A(K)) dim(X(A/K)[2]) dim Sel2(A/K)
7 77a −8 2 0 2
7 77b −8 0 2 2
13 143a −7 2 0 2
13 143a −8 2 0 2
17 187a −7 2 0 2
17 187a −24 0 2 2
19 209a −7 2 0 2
19 209a −19 2 0 2
29 319a −8 2 0 2
29 319a −19 0 2 2
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16. p-ADIC WALDSPURGER FORMULA AND HEEGNER POINTS
BY YIFENG LIU

Let p be a prime number and Cp the algebraic closure of Qp. Let E ⊂ Cp be a CM number field,
and F ⊂ E a maximal totally real subfield. p will denote a place of F , P a place of E, over p.
A will denote the ring of adeles of F , A∞ is the ring of finite adeles of F . B is a totally definite
incoherent quaternion algebra. This means that Bi is definite for any i <∞, and incoherent means∏
v

ε(Bv) = −1.

Let B → (Xv)v be projective system of Shimura curves over F . X is the projective limit of XU ,
U is an open compact subset B∞× = (B⊗ A∞)×.

Definition 16.1. A function X(Cp) → Cp is a p-adic Maaß function if it is a pullback from a
locally analytic function on XU for some U .

This is joint work with Shouwu Zhang and Wei Zhang .

Example 16.2. f : X → A where A is an abelian variety over F . ω ∈ H0(A,Ω1
A), logω :

A(Cp)→ Cp, with f ∗ logω : X(Cp)→ Cp.

Denote by ACp(B×) � B∞×.

16.1. The space of all p-adic Maaß functions.
An irreducible sub-representation π ⊂ ACp(B×) of B∞× is (cuspidal) classical if there exists a
non-zero function in π that is of the form f ∗ logω.

Remark 16.3. Assume π is classical. There exists a unique classical sub-representation π∨ ⊂
ACp(B×) such that π∨ is isomorphic to the centrag of π. There’s no canonical pairing between π
and π∨.

We are given an embedding

e : A∞E ↪→ B∞ of A∞-algebras,

so that
E× ⊂ A∞×E ⊂ B∞×

Y = XE× , Y = Y + t Y − such that E× acts on the tangent space of any point in Y ±(Cp) via the
character

(
t
tc

)±1
, t ∈ E×.

Definition 16.4. For φ ∈ ACp(B×), ϕ± locally constant functions on Y ±(Cp), define

PY ±(φ, ϕ±) =

∫
Y ±(Gp)

φ(t)ϕ±(t)dt

where dt is a Haar measure on Y ±(Cp) with total weight 1, which can be expressed as a finite sum.

From now on: p splits in E, POE = PPc.
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Definition 16.5. A character
χ : E×\A∞×E → C×p

is a p-adic character of weight k ∈ Z if there exists V ⊂ A∞×E open compact such that

χ(t) =

(
tP
tPc

)k
for all t ∈ V .

χ us π-related if
ε(1/2, πv, χv) = χv(−1)ηv(−1) ∈ (Bv)

for all p 6= v <∞, where
η = ⊗ηv : F×\A→ {±1}

quadratic character associated to E/F . Let Ξ(π)k to be the set of all π-related p-adic characters of
weight k. D(π) to be the coordinate ring of the above curve, which is a complete Cp-algebra.

Remark 16.6. When F = Q, D(π)→ OCp [[Γ∞]]
[

1
p

]
, Γ∞ the Galois group of the anti-cyclotomic

Zp-extension of E at p.

L : Cp → C, χ p-adic character of weight k.
χ

(1)
v = 1, v|∞, v 6= ι|F
χ

(ι)
v =

(
z
zc

)k
, v = ι|F , z ∈ E ⊗F,ι R→ C

χ
(ι)
v = ι ◦ χv, v <∞, v 6= p

χ
(ι)
p = ι(χq(t))

(
t
tc

)k
), t ∈ E×p

χι =
⊗
v

χ(ι)
v : E×\A×E → C×. Denote by π+ = π, π− = π∨. We choose:

(1) (·, ·)π: π+ × π− → Cp.
(2) C : Y +(Cp)→ Y −(Cp) that is A∞×E -equivariant.
(3) ψ : Fp → C×p of level 0.

The above defines some “period ratios” Ωι(χ) for any ι : Cp → C, χ ∈ Ξ(π)k with k ≥ 1.

Theorem 16.7. (Liu, Zhang, Zhang ) There is a unique element L(π) ∈ D(π) such that for χ ∈
Ξ(π)k with k ≥ 1 and ι : Cp → C we have

ι (L(π)(χ)) = L(1/2, π(ι), χ(ι))
Sp(2) · Ωι(χ)

L(1, η)L(1, π(ι),Ad

ε(1/2, ψ, π
(ι)
p ⊗ χ(ι)

β )

L(1/2, π
(ι)
p ⊗ χ(ι)

βc )
2

φ± ∈ π±, ϕ± ∈ σ±χ . χ ∈ Ξ(π)0, σ±χ ⊂ Γ(Y ±) such that A∞× acts via χ±1.

PY ±(φ±, ϕ±) ∈ HomA∞×E
(π± ⊗ σ±χ ,Cp)
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By Sato-Trennell , the latter space has dimension 1.

There is a natural basis of HomA∞×E
(π+ ⊗ σ+

χ ,Cp)⊗ Hom(· · · )(∗) denoted by

α\(φ+, φ−, ϕ+, ϕ−)“ = ”
∫
A∞×\A∞×E

(tφ+, φ−)π(tϕ+, ϕ−)dt

with α\ 6= 0 as a functional.

Theorem 16.8. (p-adic Waldspurger)

PY +(φ+, ϕ+) = L(π)(χ)
L(1/2, πp ⊗ χβc)2

(1/2, ψ, πp ⊗ χβc)
α\(φ+, φ−, ϕ+, ϕ−)

where
PY +(φ+, ϕ+) =

∫
Y +(Cp)

(f ∗ logω)ϕ+(t)dt = logω(HE)

HE is a Heegner cycle on A.
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17. COLLOQUIUM - RECENT ADVANCES IN THE ARITHMETIC OF ELLIPTIC CURVES
BY KARTIK PRASANNA

17.1. Prelude.
Classical identities:

1

12
+

1

22
+

1

32
+ · · · = π2

6
1

14
+

1

24
+

1

34
+ · · · = π4

90
In general,

1

12n
+

1

22n
+

1

32n
+ · · · =

∣∣∣∣−1

2
(2πi)2n B2n

(2n)!

∣∣∣∣
where the rational numbersBn are the Bernoulli numbers, which are the coefficients corresponding
to

z

ez − 1
=
∞∑
n=0

Bn · zn

n!
.

Remark 17.1. 2πi comes from geometry, and B2n comes from arithmetic.

17.2. Products over primes.
We first consider an absolute value defined over Q. A function |·| : Q→ R≥0 is called an absolute
value if

• |x| = 0 if and only if x = 0
• |x+ y| ≤ |x|+ |y|
• |xy| = |x| · |y|.

The usual absolute value on R gives an immediate example. However, other, not-so-obvious ex-
amples exist. Namely, for any prime number p there is an absolute value | · |p which is given
by

|α|p =
1

power of p dividing α

Example 17.2. p = 5, |10|5 = 1/5, |1/5|5 = 5.

A most remarkable fact, proved by Ostrowski, is that up to equivalence these are exactly all abso-
lute values on Q.

Theorem 17.3. Take α ∈ Q, α 6= 0, we have∏
p≤∞

|α|p = 1.

Example 17.4. Take α = 17/21. If p 6= 3, 7, 17, then |α|p = 1. On the other hand, |α|3 =
3, |α|7 = 7, |α|17 = 1/17. Further, |α| = α = 17/21.

A more interesting example is given by, for example, the Riemann zeta function. Indeed, we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 + p−s + p−2s + · · ·

)
=
∏
p

1

1− p−s
.
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Riemann proved the remarkable fact that ζ can in fact be extended analytically to a meromorphic
function on the complex plane, with a simple pole at s = 1.

Recall our earlier example that the sum of the inverse of squares is equal to π2/6. This can be
expressed in terms of the ζ function

1

12
+

1

22
+

1

32
+ · · · = ζ(2) =

∏
p

1

1− p−2
.

What about the prime at infinity? How did we account for it in the product formula above? Rie-
mann actually proved a functional equation for the zeta function, which is given as follows. First
define

Λ(s) = π−s/2Γ(s/2)ζ(s).

Then Λ satisfies the functional equation

Λ(s) = Λ(1− s)

which is valid for all s ∈ C. One can view the factor

π−s/2Γ(s/2)

as the factor corresponding to the prime∞.

The functional equation implies, by the known locations of the poles of the gamma function Γ,
that ζ has simple zeroes at s = −2,−4,−6, · · · .

The ζ function is the simplest example of a class of functions called L-functions. These are func-
tions which have the following properties

(i) Defined as a product over primes
(ii) Analytic continuation

(iii) Attached to geometry
(iv) Contain arithmetic information

Geometry: Think about A1 \ {0}. ∫
γ

dz

z
= 2πi

We think about things with two loops. One such object is a torus, which we can think of as C/Λ
where Λ is a lattice. A torus is an object with genus 1; which we can naturally associate to an
elliptic curve, which is given by an equation of the form

y2 = x3 + Ax+B.

We assume that A,B ∈ Z, since we want the corresponding L-function to have arithmetic proper-
ties. Recall that

ζ(s) =
∏
p

1

1− p−s
.

Note that the denominator is linear in p−s. This is because the underlying geometry contains only
one loop. In the case of a torus (which naturally has two loops on its surface) we would expect
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something that is quadratic in p−s in the denominator, say

L(E, s) =
∏
p

1

(1− αpp−s)(1− βpp−s)

where αpβp = p. Further, the quantity (1 − αp)(1 − βp) = #E/Fp which is the elliptic curve E
over the finite field Fp.

What about the prime at ∞, and the factor corresponding to it? In this case, we have the fac-
tor

(2π)−sΓ(s)L(E, s)

If we define

Λ(E, s) = (2π)−sΓ(s)L(E, s),

then we have the functional equation

Λ(E, s) = ±Λ(E, 2− s).

We now have the following remarkable theorem, which is essentially a consequence of the ingre-
dients that went into proving Fermat’s Last Theorem.

Theorem 17.5. Λ(E, s) admits analytic continuation (Wiles /Taylor-Wiles ).

17.3. What is the Birch and Swinnerton-Dyer (BSD) Conjecture.
If E/Q is an elliptic curve, we can interpret E(Q) as follows:

E(Q) = {(x, y) : x, y ∈ Q, y2 = x3 + Ax+B}.

There is a remarkable fact that E(Q) forms a finitely generated abelian group. In fact, there is a
finite abelian group G and a non-negative integer r such that

E(Q) ∼= Zr ⊕G.

This integer r is called the rank of E.

Now, recall that we can associate to E the L-function L(E, s) which has a zero at s = 1. The
Birch-Swinnerton-Dyer conjecture then asserts

Conjecture 17.6.

r = ords=1 L(E, s)

This conjecture is an example of a “local-global” principle, which is a fundamental phenomenon
in the theory of numbers.

Remark 17.7. The left-hand-side of the above equation is called the algebraic rank while the right
hand side is called the analytic rank.
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17.4. Recent progress.

Theorem 17.8. (Gross-Zagier/Kolyvagin) If ran(E) = 0 or 1, then ralg(E) = ran(E).

Not much was known about the converse until recently. The situation change with a recent theorem
of C. Skinner and W. Zhang.

Theorem 17.9. (C. Skinner/W. Zhang) If ralg(E) = 0 or 1, then ran(E) = ralg(E), under some
additional hypotheses.

Hypothesis: (W. Zhang) we need that | Selp(E)| = 1 or p.

Theorem 17.10. (M. Bhargava-A. Shankar) For p = 2, 3, 5, Avg Selp(E) = p+ 1.

This implies that the previous two theorems apply frequently, in fact with at least 66% of curves.

17.5. Epilogue. Remember that Q can be embedded into R, via the completion with respect to the
usual absolute value. It can also be embedded into fields Qp via completion by the p-adic absolute
value | · |p. The field Qp contains a ring which naturally corresponds to the integers, which we
denote by Zp.

If m ≡ 0 (mod p− 1) with n 6≡ 0 (mod p− 1), then
Bm

m
≡ Bn

n
(mod p).

For a power series f(T ) ∈ Zp[[T ]], we have

f(1 + p)k − 1) = ζ(1− k) = · · ·
Q(C2

p)→ Q(Cp)→ Q

C is the inverse limit of Cp, Cp2 , · · · , and we have

C =
Zp[[T ]]

(g(T ))

Conjecture 17.11. (Iwasawa Main Conjecture) f(T ) = g(T ).

This was proved by Mazur and Wiles in the 1980’s. There are two types of L-functions, LI and LII,
both with their versions of Iwasawa main conjecture. The LI case was settled by Skinner-Urban
and Kato while the LII case was done by Xin Wan .

We have three types of objects, corresponding respectively to geometry, arithmetic, and analysis.
For example, given an elliptic curve E, we can associate an L-function L(E, s), which is an ana-
lytic object. We can also associate to it a Selmer group, which is an arithmetic object. We believe
the underlying principle is controlled by something called motivic cohomology . Unfortunately,
we do not know much about it!
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18. PARITY OF RANKS OF ELLIPTIC CURVES
BY VLADIMIR DOKCHITSER

Let E/K : y2 = x3 + Ax+B be an elliptic curve, where K is a number field.

Conjecture 18.1. (Parity conjecture - “explicit form”)

rankE/K ≡
∑
v|∞ΛE

λv (mod 2)

where λv ∈ {0, 1}. Further,

• λv = 0 if E/Kv is a good reduction
• λv = 1 if v|∞ or if E/Kv has split multiplicative reduction
• λv = 0 if E/Kv non-split multiplicative reduction

• λv ≡
$Fv − 1

2
if v - 2, E/Kv odd potentially multiplicative reduction

• λv =
∣∣ δE ·#Fv

12

∣∣ if v - 2, 3, E/Kv odd potentially good reduction (here δE is the value
minimal discriminant of E).
• there exist formulae for v|2, 3.

18.1. (Conjectural) consequences.

(1) If E is semistable, then

rankE/K ≡ (mod #)v|∞+ # split multiplicative primes (mod 2)

(2) E : y2 = x3 − x, d ∈ Z \ {0, 1} square-free. Then

rankEd/Q = rankE/Q(
√
d)− rankE/Q ≡

∑
v|2∞

λ(E/Q(
√
d)v) (mod 2).

Here we remark that rankE/Q = 0, so we obtain the consequence

rankEd/Q ≡
∑
v|2∞

λ(E/Q(
√
d)v) ≡

{
0 d ≡ 1, 2, 3 (mod 8)
1 d ≡ 5, 6, 7 (mod 8)

(3) Heegner hypothesis: E/Q, all p|NE in Q(
√
−D) split (D > 0) implies rankE/Q(

√
−D)

is odd.
(4) All E/Q have even rank over Q(i,

√
17).

(5) E : y2 = x3 +x2−12x−67/4 (1369E1) has even rank over all extensions of Q((−32)1/4).
(6) All E/Q with split multiplicative reduction at 2 have odd rank over Q(ζ8).
(7) E : y2 + y = x3 + x2 + x has positive rank over Q(m1/3) for all m while having rank 0

over Q.
(8) All quadratic twists of E/Q(i) by d ∈ Q(i)×

E : y2 + xy = x3 − x2 − 2x− 1(49A1)

have positive rank.

18.2. Established cases of the parity conjecture.
Virtually nothing!
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18.3. Parity of analytic rank.
Conjecturally, L(E/K, s) is analytic on C and satisfies

L(E/K, s) = ±(Γ’s, exp ’s)L(E/K, 2− s)
The ±1 is significant, and it is known as w(E/K), the global root number. It has the form

w(E/K) =
∏
v

w(E/Kv)

where w(E/Kv) are local root numbers, each equal to ±1.

ords=1 L(E/K, s) ≡

{
even if w = 1

odd if w = −1
≡
∑
v

λan
v (mod 2)

where λan
v = log−1w(E/Kv).

Theorem 18.2. (Rohrlich , Kobayashi , Dokchitser , Dokchitser, Whitehouse )

λv = λan
v

(so the parity conjecture is equivalent to rankE/K = “ rankan E/K”)

18.4. Parity of Selmer ranks.
p is a prime and let rankpE/K = Zp-corank of Selp(E/K)∨. Note that rankE/K is equal to
rankpE/K if #X is finite. What about rankpE/K modulo 2?

Quasi-theorem (GZK): rankpE/Q = rankE/Q = rankan E/Q for rankan E/Q ≤ 1.

Theorem 18.3. (Cassels , Fisher , Dokchitser-Dokchitser , Česnavičius) If E/K is such that it
admits a p-isogeny then

rankpE/K ≡
∑
v

λv (mod 2)

Proof. (assuming that #X <∞) Cassels’ work implies that
ΩE RegE #X

∏
v cv(E)

#E2
tors

=
ΩE′ RegE′ #XE′ ·

∏
v cv(E

′)

#E
′2
tors

which implies (where � denotes a square number),

prankE/K� =
RegE
RegE′

=
ΩE′

ΩE

#XE′

#XE

·
∏
cv(E

′)∏
cv(E)

· #E2
tors

#E
′2
tors

This further implies

rankE/K (mod 2) ≡
(

ordp
�
�

)
+
∑

λ′v

(check
∑
λv =

∑
λ′v). �

Theorem 18.4. (Kramer , Tunnell , Dokchitser-Dokchitser) If F/K is quadratic then

rank2E/F =
∑
v

λ(E/Fv) (mod 2)(≡ rankan E/F )

Proof. Use isogeny E × EF → ResF/K(E/F ). �
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Theorem 18.5. (Dokchitser-Dokchitser , Mazur-Rubin , de La Rochefoucauld) If Gal(F/K) ∼=
D2pn (or Dpn , depending on convention) with p odd, then

rankpE/K + rankpE
M/K + 〈χ, Selp∞(E/F )∨〉 ≡

∑
v

µv

≡ rankan E/K + rankan E
M/K + ords=1 L(E/M,χ, s) (mod 2)

Proof. Uses an isogeny between some combination of Weil restriction of scalars of E from differ-
ent fields. �

Theorem 18.6. (Monsley , Nekovár, Kim , Dokchitser-Dokchitser) For E/Q,

rankpE/Q ≡
∑
v

λv ≡ rankan E/Q (mod 2)

Proof. Use previous result with F high in the p-anticyclotomic tower of M . This implies

〈χ, Sel∨〉 = ords=1 L(E/M,χ, 1)

Choose M so that

rankEM/Q = rankpE
M/Q = rankan E

M/Q ∈ {0, 1}
This implies that

rankpE/Q ≡ rankan E/Q (mod 2)
�
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19. THE AVERAGE SIZE OF THE 5-SELMER GROUP OF ELLIPTIC CURVES
BY ARUL SHANKAR

Joint work with M. Bhargava.
Let E/Q be an elliptic curve. We will discuss the 5-Selmer group, Sel5(E). Recall we have the
following exact sequence

0→ E(Q)/5E(Q)→ Sel5(E)→XE[5]→ 0,

where the main point is that

# Sel5(E) ≥ 5rank(E).

We may ask, what is Avg # Sel5(E) when E/Q’s are ordered by height? (Recall that the height of
E = EA,B is defined by

H(E) = H(A,B) := max{4|A|3, 27B2},

cf. Section 1. Further, A,B ∈ Z and p4|A⇒ p6 - B for all primes p.)

We consider the co-regular representation V = 5 ⊗ Λ2(5). The group GL5×GL5 acts on this
representation via the action

(g1, g2)(A,B,C,D,E) = (g2Ag
t
2, g2Bg

t
2, · · · , g2Eg

t
2)(g1),

and we take the subgroup G of GL5×GL5 defined by

G := {(g1, g2) : (det g1)(det g2)2 = 1}/


λ2

. . .
λ2

 ,

λ−1

. . .
λ−1


Remark 19.1.

(A,B,C,D,E) 7→ (aX + bY + Cz +Ds+ Et)

get Q1, · · · , Q5, 5 4 × 4 Pfaffians. This defines a curve C of genus 1. V is locally soluble if
C(Qν) 6= ∅ for all ν, while it is soluble if C(Q) 6= ∅.

Theorem 19.2. (Buchsbaumm-Eisenbud , Fisher , Bhargava-Ho )

Sel5(EA,B)↔ G(Q)\V (Q)loc sol
A,B ↔ G(Q)\V (Z)loc sol

A,B

We can define an analogous height, which by abuse of notation we call H , on V (R) by H(v) =
max{4|A(v)|3, 27B(v)2}.

Question: what is #G(Z)\V (Z)ire
H<X . We have v ∈ V (Q) is reducible if ∆(v) = 0 or if V

corresponds to 1 ∈ Sel5(E).

Let F be a fundamental domain on G(Z)\G(R), R a fundamental domain for G(R)\V (R), so
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that F · R is a 5-fold cover of a fundamental domain G(Z)\V (R). Hence

5 ·#G(Z)\V (Z)irr
H<X = #{F · RH<X ∩ V (Z)irr}

=

∫
g∈G0

#{FgRH<X ∩ V (Z)irr}dg

=

∫
g∈F

#{gG0RH<X ∩ V (Z)irr}dg

Here G0 is some open bounded set in G(R) having volume 1. We can decompose F as follows

F ⊂ N ′A′K,

Here N ′ is bounded, K is compact, and

A′ →



t−4
1 t−3

2 t−2
3 t−1

4

t1t
−3
2 t−2

3 t−1
4

. . .
t1t

2
2t

3
3t

4
4

 ,


s−4

1 s−3
2 s−2

3 s−1
4

s1s
−3
2 s−2

3 s−1
4

. . .
s1s

2
2s

3
3s

4
4


 ,

where si, ti � C. This gives us the equality to

Vol(F · RH<X) + o(Vol(F · RH<X)).

This implies that
Avg(# Sel5(E)− 1) = τ(G) = 5.

Hence, by our earlier comment, since Avg # Sel5 ≤ 6, it follows that

Avg(5r) ≤ 6.

• By noticing that 20r − 15 ≤ 5r for all r ≥ 1, it follows that

Avg(r) ≤ 21

20
= 1.05

This is achieved when 95% have rank 1 and 5% have rank 2.
• Proportion of curves that have rank 0 or 1 is at least 19/24.

x+ 25(1− x) ≤ 6⇒ x ≥ 19

24
.

Recall that

wp(E) =


1 if good reduction at p
−1 if split multiplicative reduction at p
1 if non-split multiplicative reduction at p

.

Write w(E) = −
∏

pwp(E). Define d(E) as follows

d(E) = w(E) · w(E−1), d(E) =
∏
p

dp(E),

where
dp(E) = wp(E) · wp(E−1).
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Lemma 19.3. If p > 3, then dp(E) = −1 if and only if E has multiplicative reduction at p and
p ≡ 3 (mod 4).

d1/6(E) =
∏
p>3

dp(E), ∆6′(E) =
∆(E)

2∆(E)/23∆(E)/3

d1/6(E) ≡ |∆6′(E)| (mod 4) for curves having density at least 96.69%. Further, d1/6(E) 6≡
|∆6′(E)| (mod 4) for curves having density at least 3.25%.

Theorem 19.4. There exists a family F of elliptic curves defined by congruence conditions on the
coefficients of E

• F is closed under twists by −1, d(E) = −1 which implies that w(E) = 1 exactly half the
time.
• Density of F is at least 55%.

Theorem 19.5. in a family where w(E) is equidistributed and Avg(# Sel5) = 6, then

Avg(r) ≤ 0.75.

Further, the density of curves with rank 0 is at least 3/8.

Proof. Use Dokchister-Dokchitser on the 5-Selmer rank. For even n, use 12n + 1 ≤ 5n and for
odd n, use 60n− 55 ≤ 5n. Then

12 Avgeven(r5) + 1

2
+

60 Avgodd(r5)− 55

2
≤ 5

implies
Avg(r5) ≤ 0.75.

�
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20. HEURISTICS FOR BOUNDEDNESS OF RANKS OF ELLIPTIC CURVES
BY BJORN POONEN

(joint with Jennifer Park, John Voight, Melanie Matchett Wood)

20.1. Introduction.
Question (Poincare 1901): Does there existB such that for everyE/Q, we have rank(E/Q) ≤ B?

History of guesses Records
1950 Néron:

probably bounded
1954 Néron:

there existsE/Q of rank ≥ 1
1966 Cassels: 1967

“Implausible” to be bounded
1967 Shafarvich and Tate :

unbounded over Fq(t)
1982 Mestre : 1982 Mestre :

unbounded rank ≥ 12
1986 Silverman :

folklore conjecture; unbounded
2006 Granville : 2006 Elkies

bounded; with heuristic


∃E/Q of rank ≥ 28

∃E/Q(t) of rank ≥ 18

∃ infinitely many E/Q of rank ≥ 19

Almost everyone else: unbounded

Associated with E/Q are the following arithmetic objects: r = rankE(Q), SelnE, and X con-
nected by the exact sequence

(∗∗) 0→ E(Q)⊗ Qp

Zp
→ Selp∞ E →X[p∞]→ 0.

Conjecture 20.1. X is finite.

We shall assume this conjecture from now on.

Then there exists a non-degenerate alternating pairing X×X→ Q/Z so that #X is a square.

20.2. Distribution of X.
Given r, what is the distribution of X[p∞] as E ranges over rank r elliptic curves? There are three
conjectural answers.
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(1) Delaunay (2001, 2007, 2013): For any finite abelian p-group G with an alternating pairing,
what is the probability

Prob(X[p∞] ∼= G) =
#G1−r

# Aut(G, [·, ·])
·
∏
i≥r+1

(1− p1−2i).

This is in analogy with Cohen-Lenstra for class groups.
(2) Poonen-Rains (2012), Bhargava-Kane-Lenstra-Poonen-Rains (preprint) : conjectural dis-

tribution for (∗∗) led to conjectural structure in the arithmetic of E, some of which was
subsequently proven.

(3) Bhargava-Kane-Lenstra-Poonen-Rains (again) : For large n with n ≡ r (mod 2), choose
A ∈ Mn×n(Zp) subject to AT = −A with rankZp(kerA) = r. Take the limit of the
distribution of

coker
(
Znp

A→ Znp
)

tors
as n → ∞. In the Cohen-Lenstra case, this is analogous to a suggestion of Friedman-
Washington.

Theorem 20.2. (Bhargava-Kane-Lenstra-Poonen-Rains) The above three distributions coincide!

20.3. Model for rank. To model E/Q of height H: choose large n of random parity, now choose
A ∈ Mn×n(Z) subject to AT = −A and the entries of A are bounded by X . Here n,X depend on
H . Then

• (cokerA)tors models X(E)
• rankZ(kerA) models rankE(Q).

20.4. Consequences of the model.

• If n is even, rankA = n with probability approaching 1 as H → ∞ (so that X → ∞ as
well). Indeed, this is saying that it should be increasingly difficult to land on the Pfaffian
hypersurface.
• If n is odd, rankA = n− 1 with probability approaching 1 as H →∞.

This suggests that, at least asymptotically, that 50% of elliptic curves E/Q have rank 0 and 50%
of elliptic curves have rank 1. Further, all elliptic curves of rank at least 2 have to land on some
special hypersurface.

Theorem 20.3. If ρ < n and ρ is even, then approximatelyXnρ/2 of the roughlyXn(n−1)/2 possible
A’s, have rank ≤ ρ (as X →∞).

Most of this work was done by Eskin and Katznelson for symmetric matrices.

This suggests that for each r ≥ 1,

Prob(rankE ≥ r)
model
= Prob(rankA ≤ n− r)

Thm∼ Xn(n−r)/2

Xn(n−1)/2

∼ 1

(Xn/2)r−1
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20.5. Calibration (Watkins).
Consider E with even rank. Let

#X0 :=

{
#X if rankE = 0

0 otherwise.

Part of BSD: L(E, 1) =
#X0Ω

∏
cp

#E(Q)2
tors

Hence√
#X0 ∼ O(Ω−1/2)

∼ O(H1/24)

Prob(rankE ≥ 2) = Prob(
√

#X0 = 0) ∼ 1

H1/24

Hence, we can see that
1

(Xn/2)r−1
∼ 1

H(r−1)/24

20.6. Conclusion.
There are ∼ H5/6 elliptic curves of height ≤ H . If r − 1 > 20, then∑

E/Q

1

(height E)(r−1)/24

converges. So we expect only finitely many elliptic curves of rank ≥ r.

Prediction: rankE ≤ 21 with finitely many exceptions.
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