The extended degree zero subalgebra of the Ext algebra of a linear module

Dan Zacharia*

Let \mathbb{k} be a field and let R be a Koszul \mathbb{k}-algebra. Let M be a linear \mathbb{k}-module and let Γ be the Ext-algebra of M. View Γ as a bigraded algebra with the bigrading induced by the homological degree and by the internal grading of M, that is

$$\Gamma = \text{Ext}^*_R(M, M) = \bigoplus_{n \geq 0} \bigoplus_{i \in \mathbb{Z}} \text{Ext}^n_R(M, M)_i.$$

We consider next the extended degree zero subalgebra Δ_M of Γ,

$$\Delta_M = \bigoplus_{n \geq 0} \text{Ext}^n_R(M, M)_0.$$

So Δ_M is generated by all the homogeneous elements of Γ having internal degree zero. It turns out that the extended degree zero subalgebra can be used to obtain a characterization of the graded center of a Koszul algebra. I will also present some other applications of the ideas involved.

*Joint work with Ed Green and Nicole Snashall.

*Department of Mathematics, Syracuse University, 215 Carnegie Bldg., Syracuse, NY 13244, USA.