Selfinjective algebras of finite representation type with maximal almost split sequences

Marta Blaszkiewicz

Let A be a finite dimensional K-algebra over an arbitrary field K and $\text{mod } A$ the category of finite dimensional right A-modules. For a nonprojective indecomposable module X in $\text{mod } A$, there is an almost split sequence

$$0 \rightarrow \tau_A X \rightarrow Y \rightarrow X \rightarrow 0,$$

where $\tau_A X$ is the Auslander—Reiten translation of X. Then we may associate to X the numerical invariant $\alpha(X)$ being the number of summands in a decomposition $Y = Y_1 \oplus \cdots \oplus Y_r$ of Y into a direct sum of indecomposable modules in $\text{mod } A$, which measures the complexity of homomorphisms in $\text{mod } A$ with domain $\tau_A X$ and codomain X. It has been proved by R. Bautista and S. Brenner (1981) that, if A is of finite representation type and X is a nonprojective indecomposable module in $\text{mod } A$, then $\alpha(X) \leq 4$, and if $\alpha(X) = 4$, then the middle Y of an almost split sequence in $\text{mod } A$ with the right term X admits an indecomposable projective-injective direct summand. An almost split sequence in the module category $\text{mod } A$ of an algebra A of finite representation type with the middle term being a direct sum of four indecomposable modules is called a maximal almost split sequence in $\text{mod } A$.

We will discuss the structure of basic, indecomposable, finite dimensional selfinjective K-algebras A of finite representation type over a field K for which $\text{mod } A$ admits a maximal almost split sequence.

Joint work with A. Skowroński.