Cyclicity in the Dirichlet Spaces and Extremal Polynomials

Catherine Bénétieau

University of South Florida

Montréal, August 28, 2013
This talk is based on a joint paper of the same title with Alberto Condori, Conni Liaw, Daniel Seco, and Alan Sola, Journal D’Analyse (to appear), and on some preliminary joint work with these same authors.
Outline

The D_α Spaces
Outline

The D_α Spaces

Cyclicity
Outline

The D_α Spaces

Cyclicity

Logarithmic Capacity and the Brown and Shields Conjecture

Optimal Approximants

Growth Estimates

An Alternate Question?

Functions of several variables

Catherine Bénéteau

Cyclicity in the Dirichlet Spaces and Extremal Polynomials
The \(D_\alpha \) Spaces

Cyclicity

Logarithmic Capacity and the Brown and Shields Conjecture

Optimal Approximants

Growth Estimates

An Alternate Question?

Functions of several variables

Outline

The \(D_\alpha \) Spaces

Cyclicity

Logarithmic Capacity and the Brown and Shields Conjecture

Optimal Approximants
Outline

The D_α Spaces
Cyclicity
Logarithmic Capacity and the Brown and Shields Conjecture
Optimal Approximants
Growth Estimates
An Alternate Question?
Functions of several variables
Outline

The D_α Spaces

Cyclicity

Logarithmic Capacity and the Brown and Shields Conjecture

Optimal Approximants

Growth Estimates

An Alternate Question?

Functions of several variables
Outline

The D_α Spaces

Cyclicity

Logarithmic Capacity and the Brown and Shields Conjecture

Optimal Approximants

Growth Estimates

An Alternate Question?

Functions of several variables
Definition

For \(-\infty < \alpha < \infty\), the space \(D_\alpha\) consists of all analytic functions \(f : \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}\) whose Taylor coefficients in the expansion

\[
f(z) = \sum_{k=0}^{\infty} a_k z^k, \quad z \in \mathbb{D},
\]

satisfy

\[
\|f\|^2_\alpha = \sum_{k=0}^{\infty} (k + 1)^\alpha |a_k|^2 < \infty.
\]
Definition

For $-\infty < \alpha < \infty$, the space D_α consists of all analytic functions $f : \mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \rightarrow \mathbb{C}$ whose Taylor coefficients in the expansion

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \quad z \in \mathbb{D},$$

satisfy

$$\|f\|_\alpha^2 = \sum_{k=0}^{\infty} (k + 1)^\alpha |a_k|^2 < \infty.$$

The spaces D_α become smaller as α increases.
Definition

For $-\infty < \alpha < \infty$, the space D_α consists of all analytic functions $f : \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ whose Taylor coefficients in the expansion

$$f(z) = \sum_{k=0}^{\infty} a_k z^k, \quad z \in \mathbb{D},$$

satisfy

$$\|f\|_\alpha^2 = \sum_{k=0}^{\infty} (k + 1)^\alpha |a_k|^2 < \infty.$$

The spaces D_α become smaller as α increases, and $f \in D_\alpha$ if and only if the derivative $f' \in D_{\alpha-2}$.
Examples

- \(\alpha = -1 \) corresponds to the **Bergman space** \(A^2 \), consisting of functions with

\[
\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},
\]
Examples

- $\alpha = -1$ corresponds to the **Bergman space** A^2, consisting of functions with

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},$$

- $\alpha = 0$: the **Hardy space** H^2, consisting of functions with

$$\sup_{0<r<1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty,$$
Examples

- $\alpha = -1$ corresponds to the Bergman space A^2, consisting of functions with
 \[
 \int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty, \quad dA(z) = \frac{dxdy}{\pi},
 \]

- $\alpha = 0$: the Hardy space H^2, consisting of functions with
 \[
 \sup_{0<r<1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty,
 \]

- $\alpha = 1$: the (classical) Dirichlet space D of functions whose derivatives have finite area integral:
 \[
 \int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.
 \]
An equivalent norm

A description like that of the Dirichlet space, in terms of an integral is possible for the D_α spaces for $\alpha < 2$. Indeed, $f \in D_\alpha$ if and only if

$$|f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{1-\alpha} dA(z) < \infty.$$

This last expression defines the square of an equivalent norm for $f \in D_\alpha$, which we will use when convenient.
Definition of Cyclicity

A function $f \in D_\alpha$ is said to be cyclic in D_α if the subspace generated by polynomials multiples of f,

$$[f] = \text{span}\{z^k f : k = 0, 1, 2, \ldots\}$$

coincides with D_α.
Definition of Cyclicity

A function \(f \in D_\alpha \) is said to be *cyclic* in \(D_\alpha \) if the subspace generated by polynomials multiples of \(f \),

\[
[f] = \text{span}\{ z^k f : k = 0, 1, 2, \ldots \}
\]

coincides with \(D_\alpha \).

Equivalently: there exists a sequence of polynomials \(\{p_n\}_{n=1}^\infty \) such that

\[
\|p_n f - 1\|_\alpha \to 0, \quad \text{as } n \to \infty.
\]
Definition of Cyclicity

A function $f \in D_\alpha$ is said to be cyclic in D_α if the subspace generated by polynomials multiples of f,

$$[f] = \text{span}\{z^k f : k = 0, 1, 2, \ldots\}$$

coincides with D_α.

Equivalently: there exists a sequence of polynomials $\{p_n\}_{n=1}^\infty$ such that

$$\|p_n f - 1\|_\alpha \to 0, \quad \text{as} \quad n \to \infty.$$

So, f is cyclic means that the z-invariant subspace generated by f is the whole space. One of the motivations for studying cyclic functions is to understand the structure of the space in question.
Miscellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
Miscellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
- In H^2, f is cyclic if and only if f is an outer function.
Miscellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
- In H^2, f is cyclic if and only if f is an outer function.
- In A^2, there exist singular inner functions that are cyclic (Korenblum - Roberts).
Misellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
- In H^2, f is cyclic if and only if f is an outer function.
- In A^2, there exist singular inner functions that are cyclic (Korenblum - Roberts).
- For $\alpha > 1$, being non-vanishing in the closed unit disk is equivalent to being cyclic.
Miscellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
- In H^2, f is cyclic if and only if f is an outer function.
- In A^2, there exist singular inner functions that are cyclic (Korenblum - Roberts).
- For $\alpha > 1$, being non-vanishing in the closed unit disk is equivalent to being cyclic.
- $f(z) = 1 - z$ is cyclic in the classical ($\alpha = 1$) Dirichlet space.
Miscellaneous notes about cyclic functions

- Cyclic functions in any D_α space cannot have zeros inside the disk!
- In H^2, f is cyclic if and only if f is an outer function.
- In A^2, there exist singular inner functions that are cyclic (Korenblum - Roberts).
- For $\alpha > 1$, being non-vanishing in the closed unit disk is equivalent to being cyclic.
- $f(z) = 1 - z$ is cyclic in the classical ($\alpha = 1$) Dirichlet space.
- For the classical Dirichlet space, not having “too many zeros” on the circle seems to be the key.
Logarithmic Capacity

For any \(f \in D \), the non-tangential limit \(f^*(\zeta) = \lim_{z \to \zeta} f(z) \) exists \textit{quasi-everywhere}, that is, outside a set of logarithmic capacity zero (Beurling).
Logarithmic Capacity

For any $f \in D$, the non-tangential limit $f^*(\zeta) = \lim_{z \to \zeta} f(z)$ exists \textit{quasi-everywhere}, that is, outside a set of logarithmic capacity zero (Beurling).

Theorem (Brown and Shields, 1984)

If the (boundary) zeros of f,

$$\mathcal{Z}(f^*) = \{ \zeta \in \mathbb{T}: f^*(\zeta) = 0 \},$$

form a set of positive logarithmic capacity, then f cannot be cyclic.
Logarithmic Capacity

For any \(f \in D \), the non-tangential limit \(f^*(\zeta) = \lim_{z \to \zeta} f(z) \) exists \textit{quasi-everywhere}, that is, outside a set of logarithmic capacity zero (Beurling).

Theorem (Brown and Shields, 1984)

\[\mathcal{Z}(f^*) = \{\zeta \in \mathbb{T}: f^*(\zeta) = 0\}, \]

form a set of positive logarithmic capacity, \textit{then} \(f \) \textit{cannot be cyclic}.

Conjecture (Brown and Shields)

\textit{If} \(f \) \textit{is outer and} \(\text{cap}(\mathcal{Z}(f^*)) = 0 \), \textit{then} \(f \) \textit{is cyclic}.
A lot of work and partial results on this conjecture.

- Hedenmalm and Shields (1990) gave a description of cyclic functions in terms of “Bergman-Smirnov” exceptional sets.
A lot of work and partial results on this conjecture.

- Hedenmalm and Shields (1990) gave a description of cyclic functions in terms of “Bergman-Smirnov” exceptional sets.
- In 2006, El-Fallah, Kellay, and Ransford developed this idea further and gave examples of uncountable Bergman-Smirnov exceptional sets. In a series of papers (2006, 2009, 2010), these authors narrowed the gap in the Brown and Shields conjecture.
A lot of work and partial results on this conjecture.

- Hedenmalm and Shields (1990) gave a description of cyclic functions in terms of “Bergman-Smirnov” exceptional sets.
- In 2006, El-Fallah, Kellay, and Ransford developed this idea further and gave examples of uncountable Bergman-Smirnov exceptional sets. In a series of papers (2006, 2009, 2010), these authors narrowed the gap in the Brown and Shields conjecture.
- In an earlier paper (1992), Richter and Sundberg discussed multipliers and invariant subspaces, and this leads, for instance, to a proof that non-vanishing univalent functions in the Dirichlet space are cyclic.
Main Theme of this talk

Suppose $f \in D_\alpha$ is cyclic. The main theme of this talk will be to obtain information, when possible, about the polynomials p_n such that $\|p_n f - 1\|_\alpha \to 0$.
Main Theme of this talk

Suppose $f \in D_\alpha$ is cyclic. The main theme of this talk will be to obtain information, when possible, about the polynomials p_n such that $\|p_n f - 1\|_\alpha \to 0$.

- Can we obtain an explicit sequence of polynomials $\{p_n\}$ such that

 $$\|p_n f - 1\|_\alpha \xrightarrow{n \to \infty} 0?$$
Main Theme of this talk

Suppose $f \in D_\alpha$ is cyclic. The main theme of this talk will be to obtain information, when possible, about the polynomials p_n such that $\|p_n f - 1\|_\alpha \to 0$.

- Can we obtain an explicit sequence of polynomials $\{p_n\}$ such that
 \[\|p_n f - 1\|_\alpha \xrightarrow{n \to \infty} 0? \]

- Can we give an estimate on the rate of decay of these norms as $n \to \infty$?
Definition
Let \(f \in D_\alpha \). We say that a polynomial \(p_n \) of degree at most \(n \) is an optimal approximant of order \(n \) to \(1/f \) if \(p_n \) minimizes \(\|pf - 1\|_\alpha \) among all polynomials \(p \) of degree at most \(n \).
Definition

Let $f \in D_\alpha$. We say that a polynomial p_n of degree at most n is an \textit{optimal approximant} of order n to $1/f$ if p_n minimizes $\|pf - 1\|_\alpha$ among all polynomials p of degree at most n.

In other words, p_n is an optimal polynomial of order n to $1/f$ if

$$\|p_nf - 1\|_\alpha = \text{dist}_{D_\alpha}(1, f \cdot \text{Pol}_n),$$

where Pol_n denotes the space of polynomials of degree at most n.
Definition

Let \(f \in D_\alpha \). We say that a polynomial \(p_n \) of degree at most \(n \) is an \emph{optimal approximant} of order \(n \) to \(1/f \) if \(p_n \) minimizes \(\|pf - 1\|_\alpha \) among all polynomials \(p \) of degree at most \(n \).

In other words, \(p_n \) is an optimal polynomial of order \(n \) to \(1/f \) if

\[
\|p_n f - 1\|_\alpha = \text{dist}_{D_\alpha}(1, f \cdot \text{Pol}_n),
\]

where \(\text{Pol}_n \) denotes the space of polynomials of degree at most \(n \).

Note: \(p_n f \) is the orthogonal projection of \(1 \) onto the subspace

\[
V_n = \{pf : p \text{ is a polynomial, } \deg p \leq n\}.
\]
Definition
Let $f \in D_{\alpha}$. We say that a polynomial p_n of degree at most n is an optimal approximant of order n to $1/f$ if p_n minimizes $\|pf - 1\|_\alpha$ among all polynomials p of degree at most n.

In other words, p_n is an optimal polynomial of order n to $1/f$ if

$$\|p_n f - 1\|_\alpha = \text{dist}_{D_{\alpha}}(1, f \cdot \text{Pol}_n),$$

where Pol_n denotes the space of polynomials of degree at most n.

Note: $p_n f$ is the orthogonal projection of 1 onto the subspace

$$V_n = \{pf : p \text{ is a polynomial, } \deg p \leq n\}.$$

Therefore, optimal approximants p_n always exist and are unique for any nonzero function f, and any degree $n \geq 1$.
A model example and a first try.

Let \(f(z) = 1 - z \).
A model example and a first try.

Let $f(z) = 1 - z$. A first natural guess for polynomials p_n would be the Taylor polynomials of $1/f$.
A model example and a first try.

Let $f(z) = 1 - z$. A first natural guess for polynomials p_n would be the Taylor polynomials of $1/f$.

$$T_n(z) = \sum_{k=0}^{n} z^k.$$
A model example and a first try.

Let $f(z) = 1 - z$. A first natural guess for polynomials p_n would be the Taylor polynomials of $1/f$.

$$T_n(z) = \sum_{k=0}^{n} z^k.$$

It’s easy to see that

$$T_n(z)f(z) - 1 = -z^{n+1}.$$
A model example and a first try.

Let $f(z) = 1 - z$. A first natural guess for polynomials p_n would be the Taylor polynomials of $1/f$.

$$T_n(z) = \sum_{k=0}^{n} z^k.$$

It’s easy to see that

$$T_n(z)f(z) - 1 = -z^{n+1}$$

so $\| T_n(z)f(z) - 1 \|_{H^2} = 1$ (no good);
A model example and a first try.

Let \(f(z) = 1 - z \). A first natural guess for polynomials \(p_n \) would be the Taylor polynomials of \(1/f \).

\[
T_n(z) = \sum_{k=0}^{n} z^k.
\]

It’s easy to see that

\[
T_n(z)f(z) - 1 = -z^{n+1}
\]

so \(\|T_n(z)f(z) - 1\|_{H^2} = 1 \) (no good); \(\|T_n(z)f(z) - 1\|_{D}^2 = n + 2 \) (even worse!).
A model example and a first try.

Let $f(z) = 1 - z$. A first natural guess for polynomials p_n would be the Taylor polynomials of $1/f$.

$$T_n(z) = \sum_{k=0}^{n} z^k.$$

It’s easy to see that

$$T_n(z)f(z) - 1 = -z^{n+1}$$

so $\|T_n(z)f(z) - 1\|_{H^2} = 1$ (no good); $\|T_n(z)f(z) - 1\|^2_D = n + 2$ (even worse!); $\|T_n(z)f(z) - 1\|^2_{A^2} = 1/(n + 2) \to 0$.

Catherine Bénéteau
Cyclicity in the Dirichlet Spaces and Extremal Polynomials
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.

\[||T_n f - 1||_\alpha \leq ||f(T_n - 1/f)||_\alpha \leq ||f||_{M(D_\alpha)} ||T_n - 1/f||_\alpha \]

(f and all its derivatives are bounded, so f is a multiplier for D_α) and it is not hard to see that $||T_n - 1/f||_\alpha$ decays exponentially.

Therefore the rate of decay of $\text{dist}(D_\alpha, f \cdot \text{Pol}_n)$ is exponentially fast.

Catherine Bénéteau
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.
Then if T_n are the Taylor polynomials of $1/f$,
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.
Then if T_n are the Taylor polynomials of $1/f$,

$$
\| T_n f - 1 \|_\alpha \leq \| f(T_n - 1/f) \|_\alpha \leq \| f \|_{M(D_\alpha)} \| T_n - 1/f \|_\alpha
$$
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.

Then if T_n are the Taylor polynomials of $1/f$,

$$\| T_n f - 1 \|_\alpha \leq \| f(T_n - 1/f) \|_\alpha \leq \| f \|_{M(D_\alpha)} \| T_n - 1/f \|_\alpha$$

(f and all its derivatives are bounded, so f is a multiplier for D_α)
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.

Then if T_n are the Taylor polynomials of $1/f$,

$$\|T_n f - 1\|_\alpha \leq \|f(T_n - 1/f)\|_\alpha \leq \|f\|_{M(D_\alpha)} \|T_n - 1/f\|_\alpha$$

(f and all its derivatives are bounded, so f is a multiplier for D_α) and it is not hard to see that $\|T_n - 1/f\|_\alpha$ decays exponentially.
What about the other extreme?

Suppose f and $1/f$ are analytic in the closed disk.

Then if T_n are the Taylor polynomials of $1/f$,

$$
\| T_n f - 1 \|_\alpha \leq \| f (T_n - 1/f) \|_\alpha \leq \| f \|_{M(D_\alpha)} \| T_n - 1/f \|_\alpha
$$

(f and all its derivatives are bounded, so f is a multiplier for D_α) and it is not hard to see that $\| T_n - 1/f \|_\alpha$ decays exponentially.

Therefore the rate of decay of $\text{dist}_{D_\alpha}(1, f \cdot \text{Pol}_n)$ is exponentially fast.
For the next theorem...

We will use the integral norm representation, namely,

\[\|f\|_\alpha^2 = |f(0)|^2 + D_\alpha(f), \]

where

\[D_\alpha(f) = \int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{1-\alpha} \, dA(z) \]

For simplicity of notation, we let \(d\mu_\alpha(z) = (1 - |z|^2)^{1-\alpha} \, dA(z) \).
Theorem

Let $n \in \mathbb{N}$, $0 \leq \alpha \leq 1$, $f \in D_\alpha \setminus \{0\}$. Suppose $1 \notin f \cdot \text{Pol}_n$ and let M denote the $n \times n$ matrix with entries $\langle (z^k f)', (z^j f)' \rangle_{L^2(\mu_\alpha)}$. Then the unique $p_n \in \text{Pol}_n$ satisfying

$$\|p_n f - 1\|_\alpha = \text{dist}_{D_\alpha}(1, f \cdot \text{Pol}_n)$$

is given by

$$p_n(z) = p_n(0) + \sum_{k=1}^{n} p_n(0) \frac{\det M_k}{\det M} z^k,$$

where M_k denotes the $n \times n$ matrix obtained from M by replacing the kth column of M with the column with entries $-\langle f', (z^j f)' \rangle_{L^2(\mu_\alpha)}$, $1 \leq j \leq n$.
What is the theorem good for?

- If $f(z)$ is a polynomial of degree t, then M is “$2t + 1$” diagonal.
What is the theorem good for?

- If \(f(z) \) is a polynomial of degree \(t \), then \(M \) is “\(2t + 1 \)” diagonal.
- Allows for explicit construction of optimal approximants for simple examples like \(f(z) = 1 - z \) and numerical constructions for functions like \(f_\beta(z) = (1 - z)^\beta \) (\(\beta > 0 \)).
What is the theorem good for?

- If \(f(z) \) is a polynomial of degree \(t \), then \(M \) is “\(2t + 1 \)” diagonal.
- Allows for explicit construction of optimal approximants for simple examples like \(f(z) = 1 - z \) and numerical constructions for functions like \(f_\beta(z) = (1 - z)^\beta \) (\(\beta > 0 \)).

Notation for the next few slides:

\[
H_n = \sum_{k=1}^{n} \frac{1}{k} \approx \log n
\]
The optimal approximants are modified Cesàro mean/Riesz mean polynomials

\[p_n(z) = p_n(0) \left(\sum_{k=0}^{n} \left(1 - \frac{k + H_k}{n + 1 + H_{n+1}} \right) z^k \right) \]

(for the Hardy space)
The optimal approximants are modified Cesàro mean/Riesz mean polynomials

\[p_n(z) = p_n(0) \left(\sum_{k=0}^{n} \left(1 - \frac{k + H_k}{n + 1 + H_{n+1}} \right) z^k \right) \]

(for the Hardy space)

\[p_n(z) = p_n(0) \left(\sum_{k=0}^{n} \left(1 - \frac{H_k}{H_{n+1}} \right) z^k \right) \]

(for the Dirichlet space)
The optimal approximants are modified Cesàro mean/Riesz mean polynomials

\[p_n(z) = p_n(0) \left(\sum_{k=0}^{n} \left(1 - \frac{k + H_k}{n + 1 + H_{n+1}} \right) z^k \right) \]

(for the Hardy space)

\[p_n(z) = p_n(0) \left(\sum_{k=0}^{n} \left(1 - \frac{H_k}{H_{n+1}} \right) z^k \right) \]

(for the Dirichlet space)

\[p_n(z) = p_n(0) \left(1 + \sum_{k=1}^{n} \left(1 - \frac{k(k + 7) + 4H_k}{(n + 1)(n + 8) + 4H_{n+1}} \right) z^k \right) \]

(for the Bergman Space)
When do Cesàro means work?

In general, it would be very interesting to know what conditions on $1/f$ are associated with the optimal approximants being some kind of Cesàro mean.
Rate of convergence of optimal approximants

Definition
Let $f \in D_\alpha$. The *optimal norm* of degree n associated with f is

$$N_n(f) = \|p_nf - 1\|_\alpha^2,$$

where p_n is the optimal approximant of $1/f$ of degree n.
Rate of convergence of optimal approximants

Definition
Let \(f \in D_\alpha \). The \textit{optimal norm} of degree \(n \) associated with \(f \) is

\[
N_n(f) = \| p_n f - 1 \|_\alpha^2,
\]

where \(p_n \) is the optimal approximant of \(1/f \) of degree \(n \).

Notation for the rate function for the next theorem:

Definition
For \(\alpha < 1 \), we set \(\phi_\alpha(t) = t^{\alpha-1} \), \(t \in \mathbb{N} \). In the case \(\alpha = 1 \), we take \(\phi(t) = \phi_1(t) = 1/H_t \), \(t \in \mathbb{N} \).
Lemma

Let $\alpha \leq 1$. If $f(z) = \zeta - z$, for $\zeta \in \mathbb{T}$, then $\text{dist}_{D_\alpha}^2(1, f \cdot \text{Pol}_n)$ is comparable to $\varphi^{-1}_\alpha(n + 1)$ for all sufficiently large n.
Lemma

Let $\alpha \leq 1$. If $f(z) = \zeta - z$, for $\zeta \in \mathbb{T}$, then $\text{dist}^2_{D\alpha}(1, f \cdot \text{Pol}_n)$ is comparable to $\varphi^{-1}_\alpha(n + 1)$ for all sufficiently large n.

Theorem

Let $\alpha \leq 1$. If f is a polynomial whose zeros lie in $\mathbb{C} \setminus \mathbb{D}$, then there exists a constant $C = C(\alpha, f)$ such that

$$\text{dist}^2_{D\alpha}(1, f \cdot \text{Pol}_m) \leq C\varphi^{-1}_\alpha(m + 1)$$

holds for all sufficiently large m. Moreover, this estimate is sharp in the sense that if such a polynomial f has at least one zero on \mathbb{T}, then there exists a constant $\tilde{C} = \tilde{C}(\alpha, f)$ such that

$$\tilde{C}\varphi^{-1}_\alpha(m + 1) \leq \text{dist}^2_{D\alpha}(1, f \cdot \text{Pol}_m).$$
Theorem

Let $\alpha \leq 1$. If f is a function admitting an analytic continuation to the closed unit disk and whose zeros lie in $\mathbb{C} \setminus \mathbb{D}$, then there exists a constant $C = C(\alpha, f)$ such that

$$\text{dist}_{D_\alpha}^2(1, f \cdot \text{Pol}_m) \leq C \varphi_\alpha^{-1}(m + 1)$$

holds for all sufficiently large m. Moreover, this estimate is sharp in the sense that if such a function f has at least one zero on \mathbb{T}, then there exists a constant $\tilde{C} = \tilde{C}(\alpha, f)$ such that

$$\tilde{C} \varphi_\alpha^{-1}(m + 1) \leq \text{dist}_{D_\alpha}^2(1, f \cdot \text{Pol}_m).$$
What about other kinds of boundary zeros?

It would be interesting to get optimal approximants and rates of decay for functions like

$$f(z) = (1 - z)^\beta.$$
What kind of invertibility?

Cyclicity is a kind of “weak” invertibility.
What kind of invertibility?

Cyclicity is a kind of “weak” invertibility. Brown showed (1990) that if $f \in D$ and $1/f \in D$, then f is cyclic.
What kind of invertibility?

Cyclicity is a kind of “weak” invertibility. Brown showed (1990) that if \(f \in D \) and \(1/f \in D \), then \(f \) is cyclic.

Question: How far can we push the invertibility?
What kind of invertibility?

Cyclicity is a kind of “weak” invertibility. Brown showed (1990) that if $f \in D$ and $1/f \in D$, then f is cyclic.

Question: How far can we push the invertibility? Suppose f is bounded and in D_α, and suppose $\log f \in D_\alpha$. Can we say f is cyclic?
What kind of invertibility?

Cyclicity is a kind of “weak” invertibility. Brown showed (1990) that if \(f \in D \) and \(1/f \in D \), then \(f \) is cyclic.

Question: How far can we push the invertibility? Suppose \(f \) is bounded and in \(D_\alpha \), and suppose \(\log f \in D_\alpha \). Can we say \(f \) is cyclic?

Remark: The statement is true (and easy) for \(\alpha > 1 \) or \(\alpha = 0 \).
Lemma

Suppose $f \in D_\alpha$ and $\log f \in D_\alpha$. Then, for any $\tau \in (0, 1]$, we have

$$D_\alpha(f^\tau) \leq \tau^2 (D_\alpha(f) + D_\alpha(\log f)),$$

and consequently, $f^\tau \in D_\alpha$.
Lemma

Suppose \(f \in \mathcal{D}_\alpha \) and \(\log f \in \mathcal{D}_\alpha \). Then, for any \(\tau \in (0, 1] \), we have

\[
\mathcal{D}_\alpha(f^\tau) \leq \tau^2 \left(\mathcal{D}_\alpha(f) + \mathcal{D}_\alpha(\log f) \right),
\]

and consequently, \(f^\tau \in \mathcal{D}_\alpha \).

Theorem (Richter and Sundberg, 1992)

If \(f \in D \) is an outer function, and if \(\tau > 0 \) is such that \(f^\tau \in D \), then \([f] = [f^\tau] \).
Lemma
Suppose \(f \in D_\alpha \) and \(\log f \in D_\alpha \). Then, for any \(\tau \in (0, 1] \), we have
\[
D_\alpha(f^\tau) \leq \tau^2 (D_\alpha(f) + D_\alpha(\log f)),
\]
and consequently, \(f^\tau \in D_\alpha \).

Theorem (Richter and Sundberg, 1992)
If \(f \in D \) is an outer function, and if \(\tau > 0 \) is such that \(f^\tau \in D \), then \([f] = [f^\tau]\).

Richter and Sundberg applied this theorem by showing that if \(f \) is univalent and non-vanishing, then \(f^\tau \in D \), and hence is cyclic.
Theorem

Suppose \(f \in D \) and \(\log f \in D \). Then \(f \) is cyclic in the Dirichlet space.

Proof.

The logarithmic condition \(\log f \in D \) implies that \(f \) is outer.
Theorem
Suppose \(f \in D \) and \(\log f \in D \). Then \(f \) is cyclic in the Dirichlet space.

Proof.
The logarithmic condition \(\log f \in D \) implies that \(f \) is outer.
Next, by the lemma, \(f^\tau \in D \) for all \(\tau > 0 \), and so by Richter and Sundberg, \([f] = [f^\tau] \) for each \(\tau \).
Theorem

Suppose \(f \in D \) and \(\log f \in D \). Then \(f \) is cyclic in the Dirichlet space.

Proof.

The logarithmic condition \(\log f \in D \) implies that \(f \) is outer. Next, by the lemma, \(f^\tau \in D \) for all \(\tau > 0 \), and so by Richter and Sundberg, \([f] = [f^\tau]\) for each \(\tau \).

Since the lemma also implies \(f^\tau \to 1 \) in \(D \) as \(\tau \to 0 \), we have \([f] = [1]\), and the assertion follows.
For other values of α,

Theorem (Vague)

*Let $f \in H^\infty$ and $q = \log f \in D_\alpha$. Suppose a certain technical condition on the growth of approximating polynomials q_n holds. Then f is cyclic in D_α.**
For other values of α,

Theorem (Vague)

Let $f \in H^\infty$ and $q = \log f \in D_\alpha$. Suppose a certain technical condition on the growth of approximating polynomials q_n holds. Then f is cyclic in D_α.

These technical conditions might be interesting because ...
For other values of α,

Theorem (Vague)

Let $f \in H^\infty$ and $q = \log f \in D_\alpha$. Suppose a certain technical condition on the growth of approximating polynomials q_n holds. Then f is cyclic in D_α.

These technical conditions might be interesting because ...

Brown and Cohn proved (1985) that for any closed set of logarithmic capacity zero $E \subset \partial \mathbb{D}$, there exists a cyclic function f in D such that $Z(f) = E$.
For other values of α,

Theorem (Vague)

Let $f \in H^\infty$ and $q = \log f \in D_\alpha$. Suppose a certain technical condition on the growth of approximating polynomials q_n holds. Then f is cyclic in D_α.

These technical conditions might be interesting because ...

Brown and Cohn proved (1985) that for any closed set of logarithmic capacity zero $E \subset \partial \mathbb{D}$, there exists a cyclic function f in D such that $Z(f) = E$.

The functions they build satisfy the assumptions in the theorem just stated.
For other values of α,

Theorem (Vague)

Let $f \in H^\infty$ and $q = \log f \in D_\alpha$. Suppose a certain technical condition on the growth of approximating polynomials q_n holds. Then f is cyclic in D_α.

These technical conditions might be interesting because ...

Brown and Cohn proved (1985) that for any closed set of logarithmic capacity zero $E \subset \partial \mathbb{D}$, there exists a cyclic function f in D such that $Z(f) = E$.

The functions they build satisfy the assumptions in the theorem just stated.
We consider a scale of Hilbert spaces of holomorphic functions on the bidisk

\[D^2 = \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1 \right\} \]

indexed by a parameter \(\alpha \in (-\infty, \infty) \).
We consider a scale of Hilbert spaces of holomorphic functions on the bidisk

\[\mathbb{D}^2 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\} \]

indexed by a parameter \(\alpha \in (-\infty, \infty) \). We say that a holomorphic function \(f : \mathbb{D}^2 \to \mathbb{C} \) belongs to the \textit{Dirichlet-type space} \(\mathcal{D}_\alpha \) if its power series expansion

\[f(z_1, z_2) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} a_{k,l} z_1^k z_2^l \]

satisfies

\[\|f\|_{\alpha}^2 = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (k + 1)^\alpha (l + 1)^\alpha |a_{k,l}|^2 < \infty. \]
A Pair of Shift Operators

A natural pair of bounded linear operators acting on the spaces D_α are the shift operators S_1 and S_2 are defined by, for $f \in D_\alpha$

$$S_1 f(z_1, z_2) = z_1 f(z_1, z_2) \quad \text{and} \quad S_2 f(z_1, z_2) = z_2 f(z_1, z_2).$$
A Pair of Shift Operators

A natural pair of bounded linear operators acting on the spaces \mathcal{D}_α are the *shift operators* S_1 and S_2 are defined by, for $f \in \mathcal{D}_\alpha$

\[
S_1 f(z_1, z_2) = z_1 f(z_1, z_2) \quad \text{and} \quad S_2 f(z_1, z_2) = z_2 f(z_1, z_2).
\]

The invariant subspaces of interest are the closed subspaces $\mathcal{M} \subset \mathcal{D}_\alpha$ such that

\[
S_1 \mathcal{M} \subset \mathcal{M} \quad \text{and} \quad S_2 \mathcal{M} \subset \mathcal{M}.
\]
Things are bad, real bad....

Say for $H^2(\mathbb{D}^2)$,
Things are bad, real bad....

Say for $H^2(\mathbb{D}^2)$,

- There are analogous definitions for inner and outer functions.
Things are bad, real bad....

Say for $H^2(\mathbb{D}^2)$,

- There are analogous definitions for inner and outer functions
- There is no “Beurling” theorem for these invariant subspaces
Things are bad, real bad....

Say for $H^2(\mathbb{D}^2)$,

- There are analogous definitions for inner and outer functions
- There is no “Beurling” theorem for these invariant subspaces
- These subspaces may contain no bounded elements, and may fail to be finitely generated
Cyclic Functions

Definition
We say f is cyclic if

$$[f] = \text{span}\{z_1^k z_2^l f : k = 0, 1, \ldots; l = 0, 1, \ldots\} = \mathcal{D}_\alpha.$$
Cyclic Functions

Definition
We say f is cyclic if

$$[f] = \text{span}\{z_1^k z_2^l f : k = 0, 1, \ldots; l = 0, 1, \ldots\} = \mathcal{D}_\alpha.$$

It is easy to see that there exists at least one cyclic function in each \mathcal{D}_α, namely the function $f(z_1, z_2) = 1$.

Cyclic Functions

Definition
We say f is cyclic if

$$[f] = \text{span}\{z_1^k z_2^l f : k = 0, 1, \ldots ; l = 0, 1, \ldots\} = \mathcal{D}_\alpha.$$

It is easy to see that there exists at least one cyclic function in each \mathcal{D}_α, namely the function $f(z_1, z_2) = 1$. This follows from the fact that polynomials in two variables are dense in \mathcal{D}_α.
For “separable” functions, our one variable results extend

Proposition

Let $\alpha \in \mathbb{R}$, and let $f(z_1, z_2) = g(z_1)h(z_2)$, where $g, h, \in D_{\alpha}$. Then f is cyclic in D_{α} if and only if g and h are cyclic in D_{α}.
Theorem
Let $\alpha \leq 1$. Suppose g and h admit analytic continuations to \bar{D} and have no zeros in D. Define $f(z_1, z_2) = g(z_1)h(z_2)$. Then there exists a constant $C = C(g, h, \alpha)$ such that

$$\text{dist}_{D^\alpha}^2(1, f \cdot P_n) \leq C \varphi_\alpha^{-1}(n + 1),$$

for all sufficiently large n. Moreover, this estimate is sharp in the sense that if h has at least one zero on T and g has no zeros in the closed disk D, (or vice versa), then there exists a constant $\tilde{C} = \tilde{C}(g, h, \alpha)$ such that

$$\tilde{C} \varphi_\alpha^{-1}(n + 1) \leq \text{dist}_{D^\alpha}^2(1, f \cdot P_n).$$
Examples

The last theorem shows that $f(z_1, z_2) = (1 - z_1)(1 - z_2)$ is cyclic in D_α for all $\alpha \leq 1$, and in particular in D, the analogue of the (classical) Dirichlet space.
Examples

The last theorem shows that \(f(z_1, z_2) = (1 - z_1)(1 - z_2) \) is cyclic in \(D_\alpha \) for all \(\alpha \leq 1 \), and in particular in \(D \), the analogue of the (classical) Dirichlet space.
However, we have also shown that \(f(z_1, z_2) = 1 - z_1 z_2 \) is only cyclic in \(D_\alpha \) for \(\alpha \leq 1/2 \), and so is NOT cyclic in \(D \).
Examples

The last theorem shows that $f(z_1, z_2) = (1 - z_1)(1 - z_2)$ is cyclic in \mathcal{D}_α for all $\alpha \leq 1$, and in particular in \mathcal{D}, the analogue of the (classical) Dirichlet space. However, we have also shown that $f(z_1, z_2) = 1 - z_1z_2$ is only cyclic in \mathcal{D}_α for $\alpha \leq 1/2$, and so is NOT cyclic in \mathcal{D}. This is interesting!
Examples

The last theorem shows that \(f(z_1, z_2) = (1 - z_1)(1 - z_2) \) is cyclic in \(\mathcal{D}_\alpha \) for all \(\alpha \leq 1 \), and in particular in \(\mathcal{D} \), the analogue of the (classical) Dirichlet space.

However, we have also shown that \(f(z_1, z_2) = 1 - z_1z_2 \) is only cyclic in \(\mathcal{D}_\alpha \) for \(\alpha \leq 1/2 \), and so is NOT cyclic in \(\mathcal{D} \).

This is interesting!

- Some polynomials with no zeros in the bidisk are not be cyclic for the Dirichlet space of the bidisk
Examples

The last theorem shows that \(f(z_1, z_2) = (1 - z_1)(1 - z_2) \) is cyclic in \(\mathcal{D}_\alpha \) for all \(\alpha \leq 1 \), and in particular in \(\mathcal{D} \), the analogue of the (classical) Dirichlet space.

However, we have also shown that \(f(z_1, z_2) = 1 - z_1 z_2 \) is only cyclic in \(\mathcal{D}_\alpha \) for \(\alpha \leq 1/2 \), and so is NOT cyclic in \(\mathcal{D} \).

This is interesting!

- Some polynomials with no zeros in the bidisk are not be cyclic for the Dirichlet space of the bidisk
- The “size” of the zero set doesn’t seem to play the same role in cyclicity as it does in one variable.
Examples

The last theorem shows that \(f(z_1, z_2) = (1 - z_1)(1 - z_2) \) is cyclic in \(D_\alpha \) for all \(\alpha \leq 1 \), and in particular in \(D \), the analogue of the (classical) Dirichlet space. However, we have also shown that \(f(z_1, z_2) = 1 - z_1z_2 \) is only cyclic in \(D_\alpha \) for \(\alpha \leq 1/2 \), and so is NOT cyclic in \(D \). This is interesting!

- Some polynomials with no zeros in the bidisk are not be cyclic for the Dirichlet space of the bidisk.
- The “size” of the zero set doesn’t seem to play the same role in cyclicity as it does in one variable.
- Understanding even which polynomials are cyclic in this context seems like an interesting question.
Thank you for your attention!